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ABSTRACT

As the need for personal authentication increases, many people are turning to biometric
authentication as an alternative to traditional security devices. Concurrently, users and
vendors of biometric authentication systems are searching for methods to establish system
performance. This paper presents a model that defines the parameters necessary t
estimate the performance of fingerprint authentication systems without going through the
rigors of intensive system testing inherent in establishing error rates. The model presented
here was developed to predict the performance of the pore-based automated fingerprin
matching routine developed internally in the research and development division at NSA.
This paper also discusses the statistics of fingerprint pores and the efficacy of using pores, i
addition to the traditionally-used minutiae, to improve system performance. In addition,
this paper links together the realms of automated matching and statistical evaluations of
fingerprint features. The result of this link provides knowledge of practical performance
limits of any automated matching routine which utilizes pores or minutia features.

1.  Introduction

This paper provides a statistical analysis of fingerprint features, as well as a descriptio
comparison between automated and manual (forensic) fingerprint matching techniques,
includes the identification of certain critical parameters involved in any automated matc
technique. The authors use these critical parameters to determine the expected perform
any automated fingerprint matching routine, and apply their model to a specific system.

This paper establishes the performance estimates for a pore-based automated fingerprint m
routine that is under development in the research and development division at NSA. Many f
influence the performance of such a system; some have been explored previously in either
of automated matching systems or in the forensic arena, but there has been little effort
together information from both areas to estimate performance. In order to assess perform
feature uniqueness and reliability and automated matching parameters must be unde
Literature from law enforcement and criminology tends to focus solely on the uniqueness
configuration of fingerprint features, and literature concerning automated systems deals
processing and matching techniques without regard to feature uniqueness or variation of ma
parameters. Neither source has addressed feature reliability, although knowledge of all
issues is intrinsic to the development of a sound fingerprint matching technique.

Currently, the performance of biometric systems is gauged mostly by error rates. Errors
fingerprint recognition system can be one of two types. A false accept occurs whe
unauthorized user is identified as an authorized user and is therefore accepted by the sys
false reject occurs when an authorized user is not recognized as such, and is rejected
system. In order to describe the performance of a system, both the FAR (false accept rat
FRR (false reject rate) must be determined. These FARs and FRRs are accepted currently
metrics by which biometric system performance is judged today.

Although error rates serve as a good indicator of system performance, the most common m
of determining FARs and FRRs requires extensive testing, which is very time consuming.
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system parameters change, then the testing must be redone. One motivation of this pap
provide an alternative, more immediate, method for projecting system performance. In this p
a model for fingerprint matching is developed that encompasses both uniqueness (from fo
analyses) and parameters needed for automated matching techniques. This probabilistic m
generated using knowledge acquired from several sources: existing models for uniqueness
of fingerprint features developed in forensic studies, a physiological model based
morphogenesis of fingerprints, a mathematically derived matching scheme, and results
measurements of real fingerprint images. The resulting model is intended to simulate
matching system and provide the ability to estimate error rates for a given set of sy
parameters.

Inherent in developing this theoretical model, and especially in gauging the performance
internally developed system at NSA, is exploring the efficacy of using pores to match fingerp
Automated matching techniques traditionally have used configurations consisting of me
resolution features, such as branch points (bifurcations) and end points of epidermal ridges
is also possible to implement pores, which are high resolution features. The NSA internal s
is one of only a few systems to date which utilizes pores as features to match fingerprints.

2.  History

Branch and end points of epidermal ridges were used by Sir Francis Galton in 1872 to dev
probabilistic model of fingerprint individuality, and they have been used since then in
forensic (Cummins and Midlo, 1943) and automated matching (Blue, Candela, Gruther, Che
and Wilson, 1994; Hrechak and McHugh, 1990). These Galton features, or minutiae, co
unique information that enables their use in probabilistic analyses. Each Galton feature
specific type, i.e., branch point or end point, a unique location on the fingerprint, and a sp
orientation (Stoney and Thornton, 1986). The orientation can be defined for an end poin
example, as the approximate tangent angle to the ridge ending.

Most probabilistic models to date have utilized Galton features exclusively; two of these m
will be presented in this paper. The first model, published in 1977 by James Osterburg,etal at the
University of Illinois, determines the probability of occurrence of a certain configuration
Galton features in a fingerprint. Two years later, a member of Osterburg’s team, Stanley S
published a paper presenting the occurrence of Galton features as a two-dimensional M
model.  Both of these models can be adapted to use pores instead of Galton features.
Pores have been used historically to assist in forensic matching. Although most mat
methods have emphasized minutia comparisons and used pores as ancillary comparison f
the ability to match prints based on pore information alone has been documented (Ashb
1983; Locard, 1912; Stosz and Alyea, 1994). The concept of using pores to match prints ha
essentially dormant during the rise of automated fingerprint recognition systems.

3.  Physiology

The uniqueness of a configuration of pores depends on several factors, such as the num
pores involved, their respective shapes and sizes, the locations of these pores with respect
other, and so on. These factors are all a function of morphology; thus, it would be helpf
February 10, 1999 3
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discuss briefly the genesis and formation of fingerprints, as well as the implications impos
the development of pores.

Pores are formed where sweat glands in the subcutaneous layer of the skin generate swea
these sweat ducts grow through the subcutaneous layer and dermis to the epidermis, wh
open duct on the skin’s surface presents itself as a pore (Webster, 1992). (See Fig
According to a 1973 study on skin ridge formation (Hirsch and Schweichel, 1973), sweat g
begin to form in the fifth month of gestation. The sweat gland ducts reach the surface o
epidermis in the sixth month, forming pores.

The epidermal ridges are not formed until after the sixth month; then, the pattern which has
forming in the glandular fold region is transferred to the epidermis. Hirsch and Schwe
concluded that several forces affect the epidermal pattern formation; one of these forces
stabilization that occurs “when sweat gland secretion ducts open on to the surface, at r
intervals, in the papillary ridges.” These openings of the ducts on the surface are the pore
the regularity of their appearance plays a significant part in the uniqueness of pore configura
Once these pores form on the ridge, they are fixed at that location. Considerable resear
shown that pores do not disappear, move or spontaneously generate over time (Locard, 19

3.1  Model of Pore Spatial Distribution
In order to study the spatial distribution of pores, it is helpful to imagine a fingerprint based o
underlying lattice structure of sweat glands separated by distanced. Furthermore, pore
distribution is assumed to be purely homogeneous and isotropic as a result of sweat gland
thus distributed (See Figures 2.a and 2.c). This first order approximation to actual pore form
is based on the assumption that the primary function of pores is heat transfer; therefore,
should be evenly spaced. Matching a print with this kind of distribution would be trivial; if a

Figure 1. Physiology of the skin.
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pore in the first print matches any pore in the second print, then all pores match (negle
rotation effects).

The lattice model must be adjusted since the formation of epidermal ridges constrains po
appear on them. The lattice is modulated by the underlying ridge structure (See Figures 2
2.d); however, a certain degree of regularity remains. Assume that each pore is locate
“sweat gland unit,” where the units occur side by side on a ridge. Furthermore, assume th
position of the pore inside the sweat gland unit is a random variable which is unifor
distributed over the sweat gland unit dimensions.

A comparison of real and modeled pore spatial distribution is explored in Figure 3. He
fingerprint is shown ina, with pore location information extracted and displayed inb. A

Figure 2. Lattice model for sweat gland/pore placement on the finger. Ina, pores are represented in
a lattice formation. Inb, the lattice of pores is overlaid on a real fingerprint structure, inc, some
pores must be moved to comply with the ridge structure;d is the resulting lattice with small random
deviations added to some of the members. In a lattice formation, the positions are entirely
deterministic. Inc andd, the pores are distributed stochastically over the surface of the finger.
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rectangular lattice model is shown inc, andd is a modification ofc which allows a small degree
of random variation in the lattice point positions. The next image,e, depicts a lattice with an even
greater degree of variation in the pore positions. Note that inc, d, ande, no ridge modulation has
been performed and it is assumed that the underlying ridge structure is purely unidirec
(either vertical or horizontal rows of ridges). Unliked ande, for f, the points were not constraine
by a lattice structure in their positioning. The position of each point was considered to
random variable with a uniform distribution (over the dimensions of the image). Therefore
element is equally likely to occur at any location within the image. The real spatial p
distribution, inb, is more similar to the point distribution ine than f; thus, a model based on a
uniform probability distribution for the pore positions is not accurate. In fact, the magnitud
small random perturbations added to each lattice location should be quite small bas
inspection of the images in Figure 3.

Although regular spacing of sweat glands within a ridge is assumed to be the norm, one
allow for the possibility of an absent sweat gland. Along with the randomness of pore pos
within the existing sweat gland units, physiological omissions of sweat glands contribute t
deviation from the expected distance between nearest neighbor pores (Okajima, 1975).
omissions are evident in Figures 3.a and 3.b.
February 10, 1999 6
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Figure 3. a. Original image.b. The position of more than 400 pores within a fingerprint image.c.
Lattice of points.d. Lattice of points with random variation in position (within unit cell).e.Lattice
of points with larger allowed position variation.f. Plot of a set of points with positions generated
from uniformly distributed random variables (uniformly distributed set of points).g and h -
fingerprint segment with more uniformly spaced pores thana.
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important to consider how a matching routine works, especially since the matching routin
critical component of any recognition system.

4.  Automated Matching Principles

Consider the problem of comparing two different fingerprint sub-segments selected
complete prints. The first segment is obtained from a known user at the time of enrollme
registration, into the system. The second segment results from a live-scan acquired f
purpose of verifying a user’s identity. When the two segments are compared, there ar
possible outcomes: The live-scan segment either matches or does not match the reg
segment.

An enrollment procedure is used to extract pertinent information from the fingerprint and stor
information to a template (or feature vector) which then represents the user. When match
based on minutiae or pores, the template consists of vital information about these features.
case of minutia points, knowing the relative position, orientation, and type (branch or end) of
minutia in the set is sufficient:

minutia features: {(P1,Θ1,T1), (P2,Θ2,T2), ...  (PME,ΘME,TME)},

where there areME minutia enrolled,P is the position,Θ is the orientation, andT is the type. For
pores, the position relative to a local reference point, size, and shape could be stored:

pore features: {(p1,m1,s1), (p2,m2,s2), ...  (pPE,mPE,sPE)},
wherePE is the number of enrolled pores,p is the position (defined as the center of mass of t
pore),m is the size, ands is the shape. See Figure 4, which is a high resolution fingerprint ima
for examples of fingerprint features.

Whether pores or minutia are the basic features, it is possible to use a subset of the full featu
(for instance, the location only) to represent the fingerprint. Authentication is then reduced

M1
M2

Figure 4. Fingerprint features. Ina, features of minutiae points are demonstrated. In this case, both
M1 and M2 are end points with orientation defined as the direction of ridge flow at the end point.
Knowing the relative positions of M1 and M2 is sufficient to determine the degree of rotation
between sets of images. The features of pores, their relative position (defined at the center of mass
of the pore), size, and shape are seen in botha andb. Using only position information, a set of
pores is unique.
February 10, 1999 8
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comparison of two sets of points in space and deciding if they match well enough:

enrolled features: {f0,e, f1,e,..., fNC,e},
comparison features: {f0,c, f1,c,..., fNE,c},

whereNE is the number of enrolled features (pores or minutiae) andNC is the number of live-scan
or comparison features (pores or minutiae).  Figure 5 shows some basic matching concept

An important step in matching is determining a common reference point or origin in each o
print segments. For example, a particular minutia point may be used as a local origin from w
to measure the position of a set of nearby pores. This minutia point must be properly identifi
both images before the pores can be matched.

4.1  Pore Extraction Technique
The method used to extract the pores as fingerprint features is critical to the matching ro
The pore’s position, size and shape are features which make it distinct from other objects
image. Techniques used for the fingerprint data capture can be used to enhance th
information. For example, high resolution scanning and manipulation of the gain and co
camera controls can highlight the pores. The position of the pore is determined by process
gray scale fingerprint image and transforming it to a skeleton representation. By applying m
and processing routines to the skeleton to the skeleton of the fingerprint image, the pore loc
can be extracted. Pores are transformed into isolated and connected short lines in the s
image. Given this information, the size of the pore can be determined by region growing rou
operating on a binary version of the fingerprint image. More details can be found in refere
provided in the appendix (Stosz and Alyea, 1994; Stosz and Alyea, 1995).

x

y

x

y

Image A (enrolled image) Image B (comparison image)

.

.
.

.f0,e

f2,e

f3,e

f1,e

(x0,y0)

(x1,y1)

(x3,y3)

(x2,y2)

.

.
.

.f0,c

f2,c

f3,c

f1,c

(x0,y0)

(x1,y1)

(x3,y3)

(x2,y2)

Σ

Σ
Σ

Figure 5. Basic matching principles. The concept of a search area represented byΣ, is shown.
Also, measurement is based on relative positions as opposed to relying on an absolute coordinate
system. Feature f0,e which corresponds to f0,c is a feature (local origin) which is used to establish
relative positions of other features.

Σ
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4.2  Scanning Resolution
Some parameters become critical to the matching routine. For instance, the resolution at
the fingerprints are scanned determines the accuracy of feature location measure
Inherently, there may be only one pore in a given 1 mm x 1 mm section of print, and at 100
(pixels per inch), this section is represented by approximately 40x40 (1600) pixels.
comparison, at a scanning resolution of 500 ppi, the same segment is represented by 20x2

pixels. Therefore, the probability of another 1 mm2 segment of print matching with respect t
pore position is either 1/1600 or 1/400 depending on the scanning resolution. It can be see
the false accept error rate will be reduced at a higher scanning resolution at the cost
increased false reject error rate.

4.3  Feature or Search Area
The scanning resolution issue can be made invariant by defining an absolute area to be ass
with each feature (a feature area or search area). For instance, the location of a pore
enrolled print segment may be determined to be (x,y), but in the corresponding live-scan seg
its location may be shifted some distance∆ as a result of rotation, plasticity, or other distortion
For the purpose of matching these two segments, a search areaΣ, ([x-∆x, x+∆x],[y-∆y, y+∆y]) as
seen in Figure 5, can be defined such that if the feature is withinΣ, the features match with respec
to position.

The size ofΣ is a parameter that influences the performance of the system (decreasingΣ produces
a decreasing FAR and increasing FRR; increasingΣ produces increasing FAR, decreasing FRR
Practically,Σ should be large enough to account for effects such as plasticity of the finger
deviations in feature position due to variations in the data and effects of the processing algor
but not big enough for areas associated with distinct features to overlap. In a forensic compa
plasticity and distortion of the finger are accounted for by human processing, but in an auto
process, tolerances such asΣ must be incorporated to accommodate these inherent variations

4.4  Finger Plasticity
The distance between two features can change significantly due to plasticity of the finger.
relative change of position is generally not significant for nearby features within small are
print. Therefore, when measuring the position of small high density features such as po
local origin should be established.  A minutia point can be used to establish a local origin.

4.5  Reliability
A critical factor when considering the performance of a fingerprint matching system is reliab
Within the scope of this paper, overall reliability is broken down into two components: inhe
reliability and algorithm (processing) reliability. Inherent reliability refers to the physiologi
dependability of pores, which is the probability that a known pore will be visible in a partic
live-scan print. Pores do not always appear on print images; factors such as temperature a
condition can conspire to alter or suppress altogether the physical appearance of a given p

Algorithm, or processing, reliability must also be taken into account. Depending on the qual
the image, automated processing and detection algorithms make errors. There are two err
the feature detection algorithm can make: a missed detect and an incorrect (false) dete
February 10, 1999 10
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missed detect occurs when a feature (pore or minutia) is discernible in an image, yet is not p
up by the detection algorithm. A false detect occurs when the algorithm mistakenly ma
feature, when in fact, no feature is present. The degree of noise and degradation in the
influences the quantity of errors. The probability of incorrect detection,pfd, and missed detection
pmd, are parameters on which the performance of the system depends. A highpfd or pmdwill tend
to increase the FRR but have little effect on the FAR.

4.6  Match Score
A particular matching technique will produce a score representing the fraction of fea
matching between the enrolled and the live-scan prints. Figure 6 provides an examp
matching based on either minutiae or pores for two segments from different fingers and als
segments from the same finger. Generally, the number of features detected in the two di
prints,NE andNC, will be different. Therefore, the matching routine must compare two sets
configurations, with a different number of elements. For example, a pore match score,SP, can be
defined as:

where

NT = (NE + NC) = total number of pores in both segments
nm = number of pores that match
nn = number of pores that do not match

and using

nn =  NT - 2nm,

The pore matching score,SP, can be rewritten as:

A match occurs when a pore is detected in the comparison image at an enrolled pore’s locat
mismatch occurs when a detected pore from either image does not correspond to one fro
other image.  Based onSP, a decision is made to accept or reject the claimed identity of the u

This score will be in the range [-1,+1], where +1 represents a perfect alignment of the pores
different image segments. The local origin is defined to be a minutia point, and the re
rotation of the two image segments can be measured by determining the angles of corresp
minutia points.

SP

2nm nn–

NT
---------------------= Eq. 1

SP

4nm NT–

NT
-----------------------= Eq. 2
February 10, 1999 11
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5.  Uniqueness of Fingerprint Feature Configurations

The goal of this paper is to establish the practical performance limits of fingerprint matc
systems. Section 5 is devoted to determining uniqueness estimates which are related to th
accept error rate (FAR). The reliability of features, which provides false reject error
limitations, will be presented later. In section 5.1, work done to establish the uniquene
configurations of minutiae will be reviewed. Similar techniques using pores instead of min
will be presented in section 5.2 and 5.3. In addition, throughout section 5, practical mat
algorithm issues will be introduced and their influence on uniqueness estimates addressed

The uniqueness of a set of minutiae or pores is defined as the probability of occurrence of t
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Figure 6. Pore based matching example.b andc are from the same finger anda is from a different
finger. There are two very similar end point minutiae in both print segments. In fact, it is likely that
the different print segments would match based on minutia comparison alone. If the minutiae are
used to align the prints, the pore information matches for the center and right images but does not
match for the center and left images.
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Therefore, the probability of an imposter match is directly related to the uniqueness. The
unique a set of features, the less likely an imposter is to match the set. Obviously, increasi
number of features used to represent the print will increase the uniqueness of the feature s
the frequency of occurrence of particular arrangement of features will vary also.

A key issue in evaluating the uniqueness of a set of features is whether they are indepe
Another issue is the feature distribution, for features may be regularly spaced, or the fe

density (features per mm2) may be non-uniform over the fingerprint. Addressing these issue
essential in determining the theoretical false accept rate of the system. For example, a pa
combination of minutiae (such as the two end points of a ridge island) may occur frequentl
this case, an imposter is more likely to match both minutia points because of their
association, or dependence, than he would be to match two independent features. The
features that exhibit dependence are less valuable than independent features.

In section 5.1, a review of research for a minutiae configuration study that assumes indepe
minutiae will be given. A method for studying minutia dependencies is summarized in Se
8.1. For pores, the dependence issue will be handled with a distinction between intra-ridg
inter-ridge pores.

5.1 Minutia Configurations
In this section, the methods used by Osterburg,et al. (Osterburg, Parthasarathy, Raghavan, a
Sclove, 1977), to determine the uniqueness of a set or configuration of minutiae will be revie
TheP(configuration of features)defines the uniqueness of a configuration of minutiae, in a giv
area of print, which is equivalent to the probability of two different print segments match
Osterburg’s results can be used to estimate the FAR of a minutia based matching tech
although his model does not include some very important parameters inherent to auto
matching systems, such as feature reliability, detection errors, and search area vari
Therefore, the Osterburg model is just a starting point for determining the theoretical perform
(which includes both FAR and FRR estimates) of practical fingerprint matching systems.

By examining 1 mm x 1 mm segments, or cells, of fingerprint (see Figure 7 for a perspective
scales used in fingerprint processing), Osterburg determined the frequency of occurrence
possible outcomes based on Galton fingerprint features. The results are provided in Tab
Appendix A.3. The set of Galton features includes ridge endings, bifurcations, islands,
bridges, spurs, enclosures, double bifurcations, deltas, and trifurcations. Osterburg include
February 10, 1999 13
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The underlying assumption made by Osterburg is that the content of each cell is a random va
which is independent of all other cells. The implication is that any configuration of the sam
of features has the same probability of occurrence meaning, for instance, that a tightly clu
pack of minutia is just as likely as the same set of minutiae being distributed uniformly ove
print. Although the Osterburg study gives meaningful results, empirically the independ
assumption is not valid because some configurations of Galton features are much less like
others.

Based on the independence assumption, the individual feature probabilities are combined t
the probability of a feature configuration:

P(configuration of Galton features) = p0
k0p1

k1...  p12
k12 Eq. 3

wherepi (for i = 0,...,12) is the probability that a given type of Galton feature,i, will occur in a

Figure 7. Scale and relative sizes used for fingerprint analysis. Inside the broad outline, the minutia
end and branch points are marked with Os and Xs respectively.
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cell, andki is the number of cells in which the feature occurs. Thekis sum to N, the number of
cells.

As an example, the 7 mm by 7 mm block of data inside the broad box shown in Figure 7
cells containing one end point only, 8 cells containing one branch point only, 2 cells conta
both a branch and an end point, and 35 empty cells (where only branch and end points hav
considered for simplicity). Therefore, the probability of this configuration of 10 bifurcations

6 end points (16 minutiae) in 49 mm2 of print is:

P(configuration) = (0.0832)4(0.0382)8(0.0355)2(0.8431)35 = 6.97 x 10-22.

Figure 8 demonstrates the need to expand the Osterburg model in order to determine pr
values for the probability of matching. In Figure 8,a andb are two print segments that have th
same set of features, but different configurations. These two prints would not match but w
have the same probability of occurrence under the auspices of Osterburg model:

P(1st configuration) = P(2nd configuration) =

P(end point)# cells with an end pointP(empty cell)# empty cells =

(0.0832)4(0.766)21= 1.78 x 10-7. Eq. 4

For this example there are:

Combination(25 4) = 12650

different configurations possible for a set of 4 end points in 25 cells, each having the
probability of occurrence.

Figure 8. Osterburg minutia model and matching issues. In the Osterburg model, any configuration
of the same set of features has the same probability of occurrence. The probability of configuration

a or b, 4 end points and 12 blank grids in an area of 25 mm2, is 1.78 x 10-7. In a configuration, the
relative position of the features is known as well as the type and orientation of the features. Note
that the orientation of the minutia points is not the same in configurationsa andc and although the
configurations have the same probability of occurrence, they do not match. A common matching
technique is to discard the type information; therefore, configurationa matchesd but the two have
different probabilities of occurrence. Depending on the defined origin or reference point of the
print, configurationsa and e may match. Finally, the resolution at which feature locations are
measured (or the degree of allowed deviation in detected feature position) means that
configurationsa and f have a different probability of occurrence even though the minutiae are
exactly the same (configuration uniqueness is a function of resolution).
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A comparison of a and c (in Figure 8) shows that although the feature types and locations m
the orientation of each feature is also crucial to the uniqueness of a configuration. The orien
is determined by the ridge flow direction, and the number of different orientations,NO, is arbitrary
(8 for instance). Whereas the probability of both configurations is the same under the Oste
model, the different orientations actually distinguish the two configurations, thus:

P(configuration with orientation) =

P(configuration without regard to orientation) (1/NO)NP Eq. 5

whereNP is the number of points in the configuration for which the orientation is determined

In figure 8,d demonstrates a situation where the location of all the features matcha, yet the
feature types do not match. These two configurations have different probabilities and d
match under the Osterburg model but will match for a routine which keys on geometry b
invariant with respect to type. The effect of translation is noted ina ande. Even though these
configurations are different by definition, they may match depending on the choice o
reference point used to measure the minutia locations. Finally, the effect of the measur
accuracy (or resolution) can be seen comparinga with f. Even though the relative minutia
positions and orientations are exactly the same, the cell size (feature area) is different resu
a different probability of occurrence for the two configurations.

5.2 Pore Configurations

5.2.1 Pore Distribution
In order to describe the spatial regularity of pores, a deterministic model for pore distribution
proposed in section 4.1 in which neighboring pores are separated by a constant distanced and are
arranged in a lattice formation (see Figure 5). Thisd represents the average distance betwe
neighboring pores, where it is assumed that the pores are located in the center of a
containing only one sweat gland.  The value ofd is thus calculated from a live-scan image as:

d = (area of ridges/number of pores)1/2 Eq. 6

For this extreme case, matching two images consists of simply lining up any pore on both im
since the rest of the pores would align themselves accordingly. The remaining pores in the
contribute no additional information; that is,

P(all pores match)=P(one pore matches).

The model is made stochastic by assuming that each pore position can deviate by a small r
amount. The methods used in the next several sections to model intra-ridge pores are clos
to the lattice model. The intra-ridge models represent a single ridge, whereas the lattice
can be thought of as being composed of multiple independent ridges covering an area.

5.3 Intra-Ridge Pore Configurations
February 10, 1999 16
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5.3.1 Ashbaugh Model
In this section, a model describing fingerprint pores presented by Roger Ashbaugh of the R
will be examined. Ashbaugh presented his work and reviews of prior work by Edmond Lo
(circa 1912) in a series of articles on ridgeology, edgeology, and poroscopy (Ashbaugh, 19

According to Ashbaugh, the fingerprints begin forming on the fetus around the thirteenth we
development. Bumps form on the surface of the skin fusing together as they grow creatin
ridges. The bumps, or pore pods, each contain one pore which originates from a sweat g
the dermis. The pods are approximately equal in width and length (0.48 mm) resulting
frequency of about 20.8 pores/cm of ridge. The pores are unique in shape, vary in size (from
220µm), and change only in size due to growth of the skin.

Locard proposed independent poroscopy based identification and used this technique succ
to convict criminals in the early 1900s. In contrast, Ashbaugh claimed that pore and

A0 B0 C0

D0 E0

unit cell 0

unit cell 1

unit cell N

Model 1,2

F0

I0H0G0

A1 B1 C1

D1 E1 F1

I1H1G1

AN BN CN

DN EN FN

INHNGN

(x+∆x,y+∆y)
Figure 9. Models used to represent pore occurrence along a single ridge. These models can be used
to predict the probability of occurrence of a sequence of N pores on the ridge, whered is the
average distance between intra-ridge pores andr  is the average ridge width.
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comparisons should be used in conjunction with appropriate weighting depending on the ava
data. Generally, the quality of the inked or latent print determines the usefulness of
comparisons in law enforcement applications. According to Ashbaugh, the reliability of p
and their shape varies in inked and latent prints. It should be noted that the consistency o
features acquired from live-scan devices will differ from that resulting from inked or la
developing techniques (see Table 5 in Appendix A.7). As a result of his concern over pore fe
inconsistency, Ashbaugh promotes the comparison of pore locations only and states that
and size should not be used in general.

Ashbaugh further contends that pore pods occur regularly, but the position of the pore with
pod is a random variable. In addition, he assumes independence between pore pods.
model, each pod is divided into 5 general areas in which a pore may occur (as seen in Fig
The probability of a pore occurring in any of the 5 regions, A, B, C, D, or E of the pore pod,

P(pore in A) = P(pore in B) = P(pore in C) = P(pore in D) = P(pore in E) = PP = 0.2

Under the assumption that the pods are independent,

P(a sequence of N intra-ridge pores) = (PP)N = (0.2)N Eq. 7

given a sequence ofN pores on the same ridge and assuming that each pore can occur in o
five equally likely states with probability,PP.

Ashbaugh provides numerical examples for the uniqueness of a sequence of intra-ridge

Figure 10. Sufficient information for identification.a was scanned at a resolution of 800 dpi. The

small segment outlined with a dark box, and expanded inb, represents about 5 mm2 of fingerprint
area and contains more than 20 pores. According to Locard or Ashbaugh, the segment is sufficient
to identify its owner based on the relative position of the pores alone (without even including shape
or size descriptions). Note that sufficient information would exist for a minutia match by doubling
the size of the rectangular region (about 12 minutia could be enclosed). Although any segment for
which there are at least 20 pores may be used for identification, it is unlikely that sufficient minutia
information would be present in such a small area.

a b
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Based on his assumptions, the probability that two consecutive intra-ridge pores have the
relative position as two other pores is 0.04, and the probability of occurrence of a parti
arrangement of 20 consecutive pores is:

PAshbaugh(a sequence of 20 intra-ridge pores) = 0.220 = 1.05 x 10-14 Eq. 8

In addition, Ashbaugh supports the claim made by Locard that matching between 20 and 40
is sufficient to identify an individual. The implication of this statement is demonstrated in Fig
10 in which a small area of print is sufficient for identification. Since there are about 20 pore
cm of ridge, and a typical live-scan fingerprint usually contains over 50 cm of ridge, the amou
pore information required for identification is just a small fraction of the available data.

5.3.2 Distribution of Distances Between Sequential Intra-ridge Pores
In this section, a procedure for estimating the uniqueness of a sequence of pores ba
measurements of real fingerprint data is summarized. To accomplish this task, pore loc
along the ridges of live-scan prints were detected manually. Then, the distance be
successive intra-ridge pores was calculated for individual prints. The plots of intra-ridge dis
for individual fingerprints generally produced bimodal distributions with a dominant peak an
inferior peak resulting from missing or skipped pores. However, when all the data w
combined, 3748 distance measurements resulted in a smoothed single mode distributionµR =
0.377 mm (16.955 pixels),σR= 0.1820 mm (8.1680 pixels)) with a significant upper tail, as se
in Figure 11.

The tail of the distribution begins at about 0.69 mm (30 pixels), and tapers off at 2.40 mm
pixels), the maximum observed distance between intra-ridge pores. The frequency value p
at 0.30 mm (13 pixels), with a probability of occurrence of 0.0645 (at a measurement resolut

Figure 11. Plot of consecutive intra-ridge pore separation. The most frequent occurring separation
is 13 pixels (0.3 mm).
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1 pixel at 1100 ppi). This distance is defined asdR, and its probability of occurrence isP(dR). In
Figure 11, there are 104 bins represented, which is the maximum observed spacing be
pores, meaning that each bin is the size of a pixel.

Given this distribution, the probability of occurrence of any sequence of intra-ridge pores c
calculated by assuming the pores are independent. For this case, the only parameter of int
the distance between consecutive pores. In addition, a lower bound for the uniqueness
calculated by assuming that all the pores in a sequence are spaced bydR (the most likely
separation). Then any sequence of the same number of pores is guaranteed to be at least a
as this bound.

Table 2 in Appendix A.4 summarizes the uniqueness of sequences of intra-ridge pores
varying resolution. In this table, the results depend on the number of pores in the sequen
also on the measurement accuracy, or resolution, of a pore’s position. As the measur
accuracy is decreased (fewer bins in the histogram), there are fewer distances possible b
pores but the area under the distance probability density function remains constant, resul
distances with higher probabilities. Therefore,dR may not change butP(dR) will increase. The
new values forP(dR) were determined by accumulating area of the normalized histogram aro
dR symmetrically. From this table, with a resolution setting of r=3, the upper bound on
probability of occurrence is:

PMeasured(a sequence of 20 intra-ridge pores) = 0.20120 = 1.16 x 10-14 Eq. 9

for a sequence of 20 pores, which is in close agreement to Ashbaugh’s results in Eq. 8.

Figure 12. Plot of probability of a sequence of intra-ridge pores as a function of varying
resolution. The y-axis shows the negative log probability. The highest resolution and greatest
number of pores yields the lowest probability of occurrence.
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A setting of 3 for the resolution parameter, r, is reasonable based on the fact that a typical po
a diameter (assuming a circular shape) of about 5 pixels (115.5µm) and the adjusted averag
spacing (compensating for skipped pores) between intra-ridge pores is 13 pixels (300.3µm).
Thus, setting r to 3 is equivalent to an allowed displacement of size 3 pixels (69.3µm) in which to
detect the pore. Therefore, the pore’s position can vary slightly from its expected value, b
much variation will cause a mismatch. In addition, the “search area” is only big enough so
one pore is likely to be present and an adjacent pore is unlikely to overlap in this area. Figu
demonstrates how resolution and the number of pores affect the probability of occurrence.

5.3.3 Intra-ridge Pore Distribution from models
In Ashbaugh’s treatment, pore pods are divided into five regions in which the occurrence o
pore is equally likely. In reality, the desired measurement accuracy determines the num
regions. In addition, dividing a pore pod into 5 distinct regions is not convenient for an autom
system. Therefore, a similar but improved model for the pore placement will be discussed
which will be used to establish the distribution of intra-ridge pore spacing. The results tha
model generates can be compared to the measured data to determine the accuracy of the 

Assume that an individual pore occupies a unit area, or cell. Unit cells are bounded on the
by the ridge border, and their length is defined as the average distance between intra-ridge
Unlike Ashbaugh’s model, unit cells are not a physiological feature; they are simply defined a
average area of print associated with a single pore. The location of the pore within a unit ce
random variable and therefore, a sequence of intra-ridge pores is represented by a random
for which the elements are independent and identically distributed. In addition, there is a
probability of a pore not occurring in a unit cell (an empty unit cell). This condition is used
explain the occurrence of relatively long segments of ridge which have no pores.

As shown in Figure 9.b, the unit cells are divided into 9 sub-regions, Ai,...,Ii, for a given unit cell
i. For this analysis, two models will be examined. In the first model, Model 1, the position o
pore is uniformly randomly distributed over the entire unit cell. This assumption eliminates
need for the 9 sub-regions. In the second model, Model 2, the probability that a pore occurs
center of the unit cell, or ridge, is greater than that for the edge of the ridge. For this case, th
can be located anywhere within the sub-division of the unit cell with equal probability. Note
the intra-ridge pore models essentially represent one column (or row) of the stochastic mo
lattice pore model described in Section 4.1.

The distribution of distances between consecutive intra-ridge pores in a sequence c
simulated using these two models and the results compared to the distribution obtained us
actual measured data in section 5.3.2.

5.3.3.1 Ashbaugh model
Ashbaugh’s critical assumptions about the “pore pod” are that it is symmetric in shape (wi
height), a series of pore pods form a ridge, and the pore can be located anywhere within th
with equal probability. By generating uniformly distributed random vectors of len
approximately equal to the number of pores measured in section 5.3.1, a string of pore
modeled and the distance between consecutive pores calculated. The resulting distribu
February 10, 1999 21
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roughly triangular in shape and a simulation is shown in Figure 13.

Comparing Figure 14.a, the distribution of the measured data, it is evident that these
distributions do not match; therefore, modifications to the Ashbaugh assumptions are requ
model the distribution more accurately.

5.3.3.2 Model 1
Model 1 is an extension of the Ashbaugh model. The assumption of randomly located
within a unit cell is similar to the assumption of randomly located pores within pods.
difference is that Model 1 incorporates unit cells with rectangular dimensions instead of sq
with the width corresponding to the average width of a ridge and the length being the av
adjusted spacing between intra-ridge pores (derived from measured data). In additio
provision of a unit cell with no pore present (skipped pores) in Model 1 is used to account fo
long tail of the distribution of the real data. The probability of a skipped pore is estimated u
the distribution of distances derived from measured data and is approximated as 8.3%. F
Model 1 limits the minimum possible spacing between pores so that simulated pore positio
not unreasonably close together. The distribution of a set of simulated pore positions bas
Model 1 is shown in Figure 14.c and is very similar to the distribution measured from real d

5.3.3.3 Model 2
Model 2 is an extension of Model 1 and is meant to account for the fact that in real fingerprin
pores tend to be located on the center of the ridge. The assumptions used in Model 2 are th
as those used in Model 1 except that the probability of the pore being located in the center
ridge is higher than the probability of a pore occurring on the edge of the ridge. It is seen
Figure 14.d that Model 2 simulates the real data distribution closely but there is not a signi
difference between simulations of Models 1 and 2.

5.4 Ridge-independent pore configurations
Knowing the probability of occurrence of a sequence of intra-ridge pores is of value for pro
the efficacy of using pores for identification. However, in practice, it may be unnecessary o

Figure 13. Distribution of intra-ridge pore spacing according to Ashbaugh’s assumptions.
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difficult (for example with very noisy images) to associate pores with specific ridges. In t
cases, extracting only the pore information while disregarding their ridge associatio
preferable. In this section, the value of ridge-independent configurations of pores wi
examined. For this analysis, the configurations are made up of pores which exist in a local
of the fingerprint but may reside on several different ridges.

5.4.1 Binomial distribution of pores
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Figure 14. Distribution of intra-ridge pores. The measured distribution of spacing between
consecutive intra-ridge pores is shown ina (µ = 16.96,σ = 8.16) (where distance is measured in
units of pixels). Ashbaugh’s model for pore distribution generates the dashed curve inb. Model 1 is
an extension of the Ashbaugh model which includes non-square unit cells and also a minimum
allowed separation of pores and is represented by the dotted graph inb. Model 1 also has a
provision for missing pores, which can be used to account for the tail of the real data distribution as
shown in the solid curve inb. For Model 1, the unit cell size was 21 pixels wide by 13 pixels long,
the fraction of skipped pores was 0.083, and the minimum allowed pore separation was 1 pixel (m
= 16.7 and s = 6.5 for model 1 with 50000 samples).c shows the close fit between the real data and
the Model 1 simulation. The second model, Model 2, includes the ability to force pores to be
located on the center of the ridge with a higher probability than on the edges. With the probability
of a pore occurring in the middle 1/3 of the ridge increased, the distribution is plotted ind along
with the real data distribution for comparison.
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The technique used by Osterburg, outlined in section 5.1, for determining the uniquenes
configuration of minutiae can be extended for use with pores. For this purpose, 67 different
of varying quality were analyzed on a 5x5 pixel scale (see Figure 7 to get a feel for this
segment). Each image was divided into 5x5 pixel segments and the number of pores per se
was counted. In such a small area, there is little chance of more than one pore occu
therefore, a binomial distribution should result. From the data, 93.3% of search areas con
no pores and 6.7% contained one pore.

Defining

pα = P(one pore in a 5x5 pixel cell)  = 0.067 Eq.10

and

q = 1 - pα = P(no pores in the cell) = 0.933

and assuming that pores are independent, the probability of occurrence of a configurationNP
pores in a region ofNC cells is given by:

where there are

different configurations possible whenNP pores are present.

Assuming independence among the pores, the binomial distribution can be used to yie
probability of any particular configuration of pores occurring in any area of print. For examp
section of fingerprint which measures 20x20 pixels (0.462 mm x 0.462 mm) consists of an
of 16 grids of size 5x5 pixels each. Therefore, the probability of occurrence of a configur
with between 0 and 16 pores in that area can be calculated. Table 3 in Appendix A.5 summ
the results for this analysis. From the table, the most likely configuration of pores in a 2
pixel region has a single pore. The probability of occurrence of a certain configuration with
pore is 0.0237 and since there are 16 configurations of one pore possible, the likelihood th
pore is present (regardless of the configuration) is 0.379.

In practice, a larger segment of fingerprint is desirable. The results for a 40x40 pixel (0.924
0.924 mm) area, 4 times the area of the 20x20 pixel segment, are discussed next. For thi
the segment consists of 64 grids of size 5x5 pixels (see Figure 15 for a typical example
segment this size is large enough to contain significant ridge structure while not exhib
distortion due to finger plasticity sometimes present in larger areas of print. As seen in Ta
the most likely number of pores in this area is 4, with a probability of 20.0%. (Figure A.5.1 sh
the relationship between the number of possible configurations for a given number of pore

P NP( ) pα
NPq

NC NP–( )
= Eq. 11

NC

NP 
 
  NC!

NP! NC NP–( )!
-------------------------------------= Eq. 12
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probability of any particular configuration of a given number of pores, and the overall probab
of a given number of pores occurring.) As an example, any configuration of 4 pores, like th

shown in Figure 15 has a probability of occurrence of 3.14 x 10-7, and there will be 6.35 x 105

different configurations of 4 pores in a 64 grid area. For comparison, from the table, it is n
that the most likely configuration is the one with no pores, which occurs with a probabilit
1.18%. For perspective, assuming the most likely sequence of pores occurs in a 40x40
segment, the probability of a different fingerprint matching is 0.0118 based on comparison o
location only with a resolution (or measurement accuracy) of 5x5 pixels.

In order to compare the results for intra-ridge sequences to ridge independent configura

assume that 20 pores occur in an area of size 4 mm2. This is a good approximation based on th

density of pores being about 5 pores/mm2. Again using cells of size 5x5 pixels, the area consis
of 300 cells. Given this area, the probability of occurrence of a configuration of 20 r
independent pores would be,

PRI(a configuration of 20 ridge independent pores) = 1.23 x 10-32 Eq. 13

which is 1.06 x 10-18 times smaller than the probability of an intra-ridge sequence with the s
number of pores (assuming all pores are spaced by the most likely separation).

5.4.2 Measuring configuration probabilities
In the previous discussions, the underlying assumption of independence makes uniq
calculations possible. In reality, though, the independence assumption is not accurate.
appears to be a definite influence on a pore’s position depending on the relative positions
neighboring pores. If the independence assumption is not valid, then the assumption th
possible configurations of N pores are equally likely is also not valid. In this case, it is desi

Figure 15. A possible pore configuration. Using a 5x5 pixel grid (equivalent to 0.115 mm x 0.115
mm area of print) a binomial pdf can be generated from the probability of a pore being present or
absent in the 5x5 cell. With an analysis area of size 40 pixels x 40 pixels which is 0.92 mm x 0.92
mm, there are 8x8 grids of size 5x5 pixels. The probability of this configuration (or any

configuration of 4 pores) is 3.14 x 10-7.

P
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5 pixels
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to determine the exact probability of occurrence of each possible configuration of N pore
finding the histogram or pdf of the configurations. This information could be used by
processing routine to ignore highly likely configurations and to search for very distinctive
configurations providing inter-class separability. The expected outcome is a reduction i
number of false accept errors.

As alluded to before, a segment with an area of between 1 and 4 mm2 should be optimal for
processing pores. For this size area, the number of pixels (at 1100 ppi = 43.3 ppmm sca
resolution) is approximately 40x40 (1600) to 80x80 (6400). The resolution is effectively red
by analyzing 5x5 pixel segments, leading to areas of 8x8 (64) or 16x16 (256) cells. In fa
determine the histogram of all possible configurations is unreasonable even for the simples

of low resolution and smaller area. There are 264 possible configurations for the smaller area wi

low resolution and 26400configurations at high resolution and larger area. As an interesting n

about 4,000 km by 4,000 km of print area would be needed in order to fill each of the64

histogram bins with only one entry. Even with the enticement of free doughnuts, it is unlikely
the researchers could have gathered sufficient subjects to accumulate the data for this exp

These numbers are actually exaggerated, since only a small subset of the total num
theoretical configurations are really possible. Based on measurements, there were neve
than 12 pores detected in a print area of size 40x40 pixels, and this event had the r
probability of 0.03%. The most probable number of pores to occur in this area was 4, w
probability of 22.3%. The complete distribution of measured data is shown in Figure 16. Eve
applying such a realistic constraint on the pore density, the number of configurations is
enormous.

5.4.3 Measuring configuration code probabilities
Even though the actual probability of a particular configuration cannot be determined, val
information can still be gained by analyzing ridge independent configurations of pores w
realistic sized regions. The next two sections will outline an analysis whereby a binary
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Figure 16. Measured density of pores (pores/mm2) in a 40x40 pixel area of print.
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method was used to represent pore configurations. Implementing a binary code (1 = pore,
pore) in a 4 cell area of analysis to describe a configuration yields 16 different possibilities w
those 4 cells (0000, 0001, ..., 1111). As already mentioned, executing a high area (many ce
high resolution analysis is not practical. Therefore, using a pyramid paradigm, a low reso
and small area analysis was performed first and “tiers” of analysis areas were built aroun
basic unit. Once the accuracy of the information gathered from the small area, low reso
study was established, a higher resolution study was conducted. Sixty-seven different ima
varying print quality were used for this analysis.

5.4.3.1 Low resolution configuration code study
The exact size of the basic unit of analysis was determined using the average pore dens
print, where

size of analysis unit = (total number in pixels/total number of pores)1/2

-> 19 x 19 pixels.

This square analysis area is the “Level 0” unit of a three-tiered construct (see Figure 17); w
this level, the distribution of the number of pores present was determined. The most fre
occurrence was 1 pore in a Level 0 analysis area which happened in 48% of the units.
frequency of pores per analysis unit is shown in Figure 18.

Two higher levels are used to formulate the binary code discussed earlier. The next
composed of 4 units of the Level 0 area of analysis (38x38 pixels). Within each Level 0 u
one represents the existence of at least one pore, and a zero indicates that no pores are p
that area. The binary digits from these 4 blocks generate a 4-digit code that can be analy
determine which codes occur the most or least frequently. This model precludes establishi
exact pixel location of each pore.
The probability of one pore existing in a Level 0 unit is significantly different from the probabi

Figure 17.Ridge independent pore model. For example, in a 76x76 pixel area (level 2), the code is
1111, at higher resolution (level 1), each 38x38 pixel block has at least one pore present, giving a
code of 1111. Finally, at the Level 0 analysis, the exact distribution of the number of pores present
is known within a 19x19 pixel area. For this example, assume that each level 1 segment contains 5
pores (1 in each of three blocks and 2 in the remaining block), then the probability of this particular

occurrence of 20 pores is 5.186 x 10-8.

Level 2, 76 pixels

1 or more

1 pore

Level 1, 38 pixels

Level 0, 19 pixels

Code 1111, prob = 0.95

Code 1111, prob = 0.28

pores

1 or more
 pores

1 or more
 pores

1 or more
 pores

1 pore

1 pore 2 pores
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of five pores residing in a unit, and thus these probabilities, in combination with the probabi
of the 4-digit codes, or Level 1 configurations, contribute to the overall probability of an ac
pore configuration at Level 1. For Level 1, the most frequently occurring code was 1111, w
occurred 28% of the time. The code frequencies are shown in Figure 19, where the nex
frequently occurring codes were those containing three ones and a zero; each of these o
about 10% of the time. The least frequent (and therefore the most valuable) code was
which occurred with a frequency of 1.5% (this number actually matches closely the r
established in section 5.4.1 in which the calculated probability of no pores is 1.18%).

The probability of a specific configuration occurring, for example, 1111 at Level 1 w

Figure 18. Measured density of pores in a 19x19 pixel unit cell.
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Figure 19. Measured frequencies of “codes” occurring in a 38x38 pixel area, where a binary “1”
indicates the presence of at least one pore in a 19x19 pixel area, and a “0” indicates an absence of
any pores. The codes are comprised of these 1s and 0s to represent configurations of pores.
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corresponding densities in the Level 0 units of 1, 2, 3, and 1 pores, is thus:

P(configuration) = P(code 1111 at Level 1)x
P(density=1)P(density=2)P(density=3)P(density=1)

= (0.28)x(0.48)(0.19)(0.03)(0.48) = 3.68 x 10-4

which is the probability of a configuration of 7 pores in an area of 38x38 pixels.

Four Level 1 units can be combined to make up the third tier (Level 2), which is simply
extension of the Level 1 analysis. Each Level 1 unit contains a zero if none of its Level 0
have any pores in it, and the Level 1 unit contains a one if any of its Level 0 units contain at
one pore. The 4 digits from these Level 1 units, four of which make up Level 2, generate an
4 digit binary code, the different possibilities of which are analyzed similarly to the co
generated by the Level 0 units. The Level 2 analysis generated codes of 1111 with a freque
about 95%, which is evident in Figure 20. Because the Level 2 analysis is at such a low reso
(low measurement accuracy), many of the codes, especially those containing mostly zeros
occurred. Using an example with 20 pores (see Figure 17 for details), the probability
particular configuration is determined to be,

PLevels(a configuration of 20 ridge independent pores) = 5.186 x 10-8 Eq. 14

The codes generated at Levels 1 and 2 and the various local pore densities of Level 0 ge
three different sets of probabilities, all of them combining to give the overall probability of p
configurations in an image. This analysis, however, is performed at a very low effe
resolution, and though it provides actual configuration information, a higher resolution ana

Figure 20. Measured frequencies of “codes” occurring in a 76x76 pixel area, where a binary “1”
indicates the presence of at least one pore in a 38x38 pixel area, and a “0” indicates an absence of
any pores. The codes are comprised of these 1s and 0s to represent configurations of pores.
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5.4.3.2 High resolution configuration code study - Binomial Distribution
The previous analysis was repeated at a higher resolution. For this case, instead of
individual codes, such as 1101, the number of ones in the code were summed (i.e., 1101 = 3 ones).
This limited analysis was necessary because the number of possible codes for a reasonable
print is exceedingly large. The exact configuration information is lost when the codes
condensed in this way and the codes simply represent the number of pores in a given are
result is a histogram of the number of pores in a given area of print which can be compared
results achieved assuming independent cells with a binomial distribution as was done in s
5.4.1.

Instead of the 19x19 pixel area (Level 0 analysis) which was analyzed in section 5.4.3.1,
pixel cell was used. As was stated before, a binomial distribution results with 93.3% of the s
areas empty and 6.7% containing one pore. The actual probabilities of the condensed code
found by analyzing an area 4 cells by 4 cells (20x20 pixels) and then an area 8 cells by 8
(40x40 pixels). These analyses yields the distribution of either 16 (small area) or 64 (large
possible “condensed codes.” Similar to Level 1 of the low resolution study, ones and zeros
assigned to blocks according to whether or not pores were present.

Theoretically, a similar distribution could be derived by extrapolating the binomial distribu
(the probability of one or zero pores). This was done in Section 5.4.1 using Osterburg’s me
However, this method assumes independence. Section 8 of this paper explores the con
dependence among pores and demonstrates why extrapolating a distribution from the bino
not as accurate as measuring the pore density directly.

6.  Reliability - FRR analysis

Many factors that determine the FAR of a system were discussed in the previous sections; S
6 is devoted to factors that can affect the FRR. Whereas the FAR analysis centers o
differences between an impostor and an authorized user, the FRR focuses on variabilit
occurs within an authorized user’s fingerprints over time. These variations can be stud
determine the feature reliability, with regard to physiology and algorithm.

To ensure authentication of an individual with 100% accuracy, either the individual’s live-
fingerprint must be exactly the same as the enrolled print or, in the presence of nois
distortions, the features of the live-scan print corresponding to the enrolled print must be ext
without error. In the real world, noise and distortions are always present, and no autom
process is perfect. In addition, the physiological reliability of pores falls short of 100%; there
the inherent and algorithm (or processing) reliability warrant further study.

6.1  Inherent reliability
The physiological reliability of pores (or inherent reliability,Ri) depends on environmenta
factors; temperature and skin condition can conspire to alter or suppress altogether the p
appearance of a given pore. Individual pores from 516 images of ten different fingerprints
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analyzed to determineRi with respect to both pore visibility (or detection) and size (both absol
and relative to other pores in the image). Clarity of the pore, image quality, skin condition
pore density were also recorded. The results can be seen in Table 6 of Appendix A.7. It sho
noted that all of this data was collected manually (by eye) to prevent introducing algorithm e

The specific pores studied were visible on average in 91% of the images (Ri = 0.91). The least
reliable pore was visible in only 75% of the fingerprint images. In this case, the reason for th
reliability is that during capture of these images, the individual altered his prints through a va
of means, i.e., gripping a cold soda can prior to image capture. Therefore, 75% can be est
as a lower bound forRi. Although pore size and shape are of significance, the most impor
aspect ofRi is whether or not the pore is actually present (detectable). It is also importa
remember that, although the lower bound for detection is 75%, that lower bound is for one
not a configuration of pores. If twenty pores are used to match prints, the 75% refers t
reliability of only one pore out of the twenty.

Although the characteristic skin condition, image quality, size, and shape consistency v
somewhat among the individuals’ prints, there were several correlations between categorie
instance, the more neutral prints (with regard to skin condition) had the highest image qu
Furthermore, prints of lower image quality tended to correspond to a dry skin condition, and
pores were less consistent in shape. Finally, circular pores proved to be the most reliabl
regard to shape.

6.2  Algorithm reliability
The reliability of the algorithm,Rd, was also examined. Using high quality prints, the prevalen
of missed detects and false detects was recorded and the causes for both types of erro
assessed. The detection algorithm missed 11% of the pores present (Rd = 0.11), and had a false
detect occurrence of 1%. It was found that the predominant source of missed detections w
thresholding stage used in preprocessing to convert grey scale images to binary. These pro
errors occurred in 4.8% of the detections. On the other side of the coin, most of the false d
were caused when the algorithm detected a pore in the middle of the valley. This phys
impossible situation may have resulted when the curvature of the ridge implied that a por
present on the edge of the ridge. The algorithm might interpret such a structure as a po
description of the events causing missed detects and false detects can be found in Tab
Appendix A.7.

These reliability statistics apply to a single pore in a configuration. The probability of
algorithm missing a given pore is 11%, but the probability of missing a configuration of m
pores is orders of magnitude smaller.

In further discussions,Ri will be defined as the probability of a feature appearing in a fingerp
image, andRd the probability that the feature is properly detected by the algorithm.  TherefoR
(total reliability), is defined as the probability that a feature appears and is properly detecte
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7.  Performance

Section 5 examined the uniqueness of configurations of features and section 6 addressed
reliability. In this section, uniqueness and reliability are conjoined to establish performa
which is defined in terms of the number of false reject and false accept errors the system pro
The number of false accept errors is related to the uniqueness of a configuration while the n
of false reject errors depends on the reliability of the features. Some parameters which con
to uniqueness have been discussed earlier: number of features, density of features, and
area. Parameters critical to the reliability are the inherent feature reliability and the efficien
the feature detection algorithm.

Consider comparing two fingerprint segments of equal size. Segment 1 is the enrolled se
and segment 2 is a subsequent live-scan which originated from either the same user or a d
user. The comparison is based on feature location only and segment 1 containsn1 features while
segment 2 containsn2 features. Assume that there were no errors in detecting features du
enrollment (all real and no false features were detected). For the two possible sources of se
2, it is necessary to determine the probability density function for the feature matching scor

Note that prior to this section all references to probability of matching or uniqueness of a s
features related to the entire set of features. Every feature was required to match for the en
to match. In this section, a more realistic approach is taken in which the number of featu
both segments as well as the number that actually match are taken into account. A matchin
provides the degree of matching between two segments with a range of a complete non-ma
complete match.

Some relevant parameters needed for the matching problem are:

nc - the number of cells or feature areas within the segment of print being analyzed
n1 - the true number of features in segment 1 - the enrolled segment
n2 - the number of features detected in segment 2 - the live-scan segment

Figure 21. Matching the enrolled segment (segment 1) to the live-scan segment (segment 2).
Features a and b in segment 1 match features d and e in segment 2. If both segments originate from
the same finger, then features d and e are either reliable features which were correctly detected or
they are false detections and a and b were unreliable. Features f and g are false detects, and feature
c is an unreliable feature. If the segments originated from different fingers, then features d, e, f, and
g are randomly positioned and can be either real features or false detects.

a b

c

Segment 1 Segment 2
(live-scan)

d e

f

g
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nm - the number of matching features
nfd - the number of features falsely detected

pmd - probability that a valid feature is not detected
pcd  = 1 -pmd = Rd - probability that a valid feature is correctly detected
pfd - probability of detecting an invalid, or false, feature at any location
pcm= 1 -pfd - probability that a feature is not detected in an invalid location.

If segment 2 originates from the same user as segment 1, then reliability must be addresse

R - reliability
Ri - inherent reliability of the feature
Rd - algorithm detection reliability
R = Ri x Rd

In addition, two sources contribute to the number of matching features:

nm = nm,R + nm,F

nm,R- the number of correct (valid feature) matches
nm,F - the number of false detects (invalid features) that match real features

Figure 21 describes some of the relevant parameters required for performance analysis.

Reliability is defined as the probability of detecting a valid feature in the correct position.R can
range from 0 (totally unreliable features) to 1.0 (no missed detects). When segment 2 is fro
impostor print,R is considered to be 0 andpfd is set equal to the measured value for the probabil
of a pore in a grid cell. This situation simulates a randomly located set of independent featu
segment 2.

A feature match is defined as the detection of a feature in the live-scan segment at a va
enrolled) feature location. A feature mismatch is defined as any feature in the live-scan w
does not match an enrolled feature. It is possible to make a false detection at the locatio
valid feature which is unreliable. This situation results in an incorrect (false) match but is n
mismatch.

Define the feature matching score to be:

wheren2,maxis the maximum number of features allowed in segment 2.

The range ofSF is [-1,+1] where a score of -1 corresponds to the case wherenm = 0 andn2 =

SF

nm

n1
------

n2 nm–

n2 max,
-----------------–= Eq. 15
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n2,max. This is the worst possible match; no features match and segment 2 contains the max
number of detected features allowed. A score of +1 results whenn1 = n2 = nm, a perfect match
with no mismatching features.

Givennc, n1, n2, nm,R, nm,F, R,andpfd, the probability ofnm pores matching can be determined b
calculating the probability of the score resulting from each variation of the input parameter
then accumulating the probability of like scores. The result is the pdf of the matching scorSF,
which can be used to calculate false accept and false reject error rates.

First assume that the two fingerprint segments originate from different fingers. Furthermor
simplicity, assume that the features are independent. Given an enrolled feature set, the num
features in segment 2 and their positions are random. Therefore, the number of matching fe
is a random variable. Whether features detected in segment 2 are real or result from de
errors is transparent since the only concern is how many features match. Givennc, n1, andn2 the
probability of matchingnm features between segment 1 and segment 2 is:

where the product terms are valid fori > 0.  Or, by defining:

The first term in Eq. 16 or Eq. 16.a ispnm, the probability thatnm features from segment 1 matc
in segment 2. The second term ispn2, the probability that there aren2 features in segment 2
wherepα, which was determined in section 5.4.1, is the probability that there is a feature in a
In this situation, the second term incorporatespfd into pα and reliability is not an issue since th
print segments originate from different fingers.

As an example, assume that for a givennc = 300,n1 = 20, andn2 = 25, that there arenm = 10
matching features. The probability ofn2 having 25 features is 0.0457 and the probability that

of them match those in segment 1 is 2.5175 x 10-7 giving an overall probability of 1.1505 x 10-8

of this situation occurring. The corresponding match score,SF, from Eq. 15 is 0.45 assuming tha
n2,maxis equal tonc.

Next, assume that the two print segments originate from the same finger. Furthermor
rotation and positioning of the segments are assumed to be known exactly. In this cas
feature reliability and the number of false detects are of critical importance. A feature ma
may not be correctly detected in the live-scan segment depending on its reliability, leading
reduction in the number of features matched. In addition, there are random false detection
in the live-scan image segment which, depending on their position, will match (improve the s

pFAR nm( )
n1

nm 
 
 

n2 i–
i 0=

nm 1–

∏
 
 
 

nc n2– i–
i 0=

n1 nm– 1–

∏
 
 
 

nc i–
i 0=

n1 1–

∏
 
 
 

---------------------------------------------------------------------------------
nc

n2 
 
 

pα
n2 1 pα–( )

nc n2–
Eq. 16=

pFAR nm( ) pnm
pn2

= Eq. 16.a
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or mismatch (reduce the matching score).  The probability of matchingnm features is:

wherenm= nm,R+ nm,F,

is the probability ofnm,R matches corresponding to real features which were correctly detect

wherepnm,F is the probability ofnm,F matches which are matches of falsely detected feature
the live-scan segment randomly occurring at valid feature locations.

And pn2, the probability that there aren2 features in segment 2, is given as:

In Eq. 20,pfd is used instead ofpα, which was used in Eq. 16.

In Eq. 17, by settingR = 0, pnm,Ris 1,nm,R= 0 therefore,nm = nm,R, andnfd = n2. In addition, if
pfd is set equal topα which was determined in section 5.4.1 then Eq. 17 reduces to Eq. 16.
situation corresponds to totally unreliable features and a false detection rate which provid
same feature density as the measured feature density. The result is that segment 2 is equiv
an imposter print segment.

If no false detects are allowed, thenpfd is 0 for Eq. 17, andnm,F = 0 andnfd = 0, therefore,n2 = nm

= nm,R.  For this case, Eq. 19 and Eq. 20 reduce to 1 and the result is:

which is just the probability thatnm features are reliable givenn1 features to start.

p nm( ) pnm R,
pnm F,

pn2
= Eq. 17

pnm R,

n1

nm R, 
 
 

R
nm R, 1 R–( )

n1 nm R,–
= Eq. 18

pnm F,

n1 nm R,–

nm F, 
 
 

n2 nm R,– i–
i 0=

nm F, 1–
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nc n2– i–
i 0=

n1 nm R,– nm F,– 1–

∏
 
 
 

nc nm R,– i–
i 0=

n1 nm R,– 1–
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----------------------------------------------------------------------------------------------------------------------= Eq. 19

pn2

nc nm R,–

nfd 
 
 

pfd
nfd 1 pfd–( )

nc nm R,– nfd–
= Eq. 20

p nm( ) pnm R,
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R
nm 1 R–( )
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= = Eq. 21
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If the reliability is 100%, thennm,R= n1, Eq. 18 and Eq. 19 both reduce to 1, and Eq. 20 becom

which represents the probability ofnfd falsely detected features in segment 2 given that there
n1 correctly detected (n2 = n1 + nfd).

Eq. 17, 18, 19, and 20 are used to determine the expected performance of a system
parameters such as the number of features enrolled, the accuracy of measurement (featur
the feature reliability, and the algorithm efficiency can all be evaluated. The plots in Figur
show how variations in the critical system parameters affect performance.

pn2

nc n1–

nfd 
 
 

pfd
nfd 1 pfd–( )

nc n1– nfd–
= Eq. 22
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Figure 22.a. Error rate plots for variation in enrolled feature density. The parameters used in this
simulation were:nc = 300,R = 0.8 (for FRR andR = 0 for the FAR plots),pfd = 0.067,n2 ranges

from [0,60], andn1 is set to 5, 20, or 40. The Equal Error Rate (EER) is 2.43 x 10-2 for n1 = 5, 6.2

x 10-4 for n1 = 20, and 3.2 x 10-4 for n1 = 40.
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Figure 22.b. Variation in feature detection error rate (fingerprint noise level). The parameters used
in this simulation were:nc = 300,R= 0.8 (for FRR andR= 0 for the FAR plots),n1 = 20,n2 ranges
from [0,300], andpfd is set to 0.05, 0.2, or 0.4. For a lower detection error rate (cleaner fingerprint
image), an enrolled user will gain access more often (the FRR error rate curve is steeper and more
towards the right). For high detection error rates (noisy images), an imposter will have a higher
feature density and will have a greater chance of gaining access. The Equal Error Rate (EER) is 7.2

x 10-4 for pfd = 0.2, and 9 x 10-3 for pfd = 0.4.
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Figure 22.c. Error rate plots for variation in feature reliability. AsR decreases, the performance of
the system degrades. An FAR plot is shown for comparison of actual system performance as a
function of the feature reliability. The parameters used in this simulation were:nc = 300,n1 = 20,pfd

= 0.067,n2 ranges from [0,60], andR ranges from 0 to 1.0 in 0.1 increments (R= 0 for the FAR plot).
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R=0 R=1

Figure 22.d. Resolution or measurement accuracy curves. Parameters forα curves:nc = 300,n1 =
20,R = 0.8 (for FRR),pfd = 0.067,n2 ranges from [0,60]. Forβ curves:nc = 200,n1 = 20,R = 0.8
(for FRR),pfd = 0.1,n2 ranges from [0,60]. Both sets of parameters simulate a comparison of two
segments with the same area and detection error rates. Theα curves simulate a system using a
more precise feature position determination and corresponding smaller search area than theβ
curves. Higher resolution will tend to make it more difficult for both a valid user and an imposter to
match (but the EER may be the same as for lower resolution settings) as seen from the curves.
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8.  Dependence

The models describing feature position discussed in earlier sections were based on an assu
of independence between the features (either minutiae or pores). Although this assump
attractive because it simplifies calculations, it does not accurately describe actual fe
placement. As alluded to in previous discussions of physiology and pore placement mode
placement of a feature depends in some way on the relative position of neighboring feature

8.1  Sclove’s Model of Dependence Between Galton Features (Minutiae):
The idea of dependence of minutia placement on the location of other minutiae is not a new
In 1979, Stanley Sclove, a member of the Osterburg team, published a paper proposin
minutia occurrence could be described by a Markov-type model (Sclove, 1979). He asserte
the presence of minutiae in a given cell is influenced by the presence of minutiae in the ad
cells. This study supplanted the model assuming independent cells with one incorpo
dependence between cells.

To summarize Sclove’s theory: For a 3 cell by 3 cell area, the cell under scrutiny is the center o
or the fifth in a linear ordering. The number of cells in this ordering containing a Galton featu
represented bya, the number of adjacencies, which ranges between 0 and 4 (in a linear orde
only the cells preceding the fifth cell will affect that cell). For a random vectorY(c)describing the

outcome of thecth cell, Sclove’s probability of a set of Galton features is represented as:

P=P[Y(c)=y(c)]P(Y(2)=y(2)|Y(1)=y(1)]P[Y(3)=y(3)|Y(2)=y(2),
Y(1)=y(1)]...P[Y(5)=y(5)|Y(4)=y(4),Y(3)=y(3),Y(2)=y(2),Y(1)=y(1)]. Eq. 23

For simplicity, the four preceding adjacent cells(Y(1)...Y(4))are referred to as matrixX(c), where
the conditional probability of Eq. 23 is reduced to

P[Y(c)=y(c)|X(c)]. Eq. 24

Assuming that the cells inX(c) exert influence over cellc, the probability of feature occurrence
involves the number of adjacencies,a, as well as the different types of features,f; if a cell is
occupied, there are still 12 different event possibilities (using data from Table 1 in the Appen
Sclove’s probability of a minutia (or Galton feature) occurrence in a cell is then:

   Eq. 25
where k(0|a) is the number of empty cells witha adjacencies,k(f) is the number of cells
containing the probability of minutia typef, P(E) is the probability of an event occurring, an
m(a) is the number of occupied cells witha adjacencies. Sclove found that asa, the number of

P k 0 a( ) P 0 a( )log[ ]

k f( ) P f( )log[ ] k 1( ) k 2( ) … k 12( )+ + +( ) P E( )log( )–
f 1=

12
∑

m a( ) P E A a=( )log
a 1=

4
∑

+

+

=
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adjacencies increases, the probability of the central cell being occupied increases monoton
Therefore, clustering of minutiae happens more frequently than uniformly spaced mi
configurations. Thus is born the concept of dependence among minutiae. This dependence
be evident in a pdf as a non-uniform distribution, whereas the equally-likely configurat
associated with independence give rise to a uniform pdf.

8.1.1  Dependence of pores:  intra-ridge
Although Sclove dealt exclusively with Galton features, his idea of feature dependence ca
be applied to pores, albeit pores are features with properties differing from minutiae. Minu
on one hand, are considered “accidental;” their spatial distribution serves no apparent purpo
contrast, pores transfer heat, so they must have a spatial distribution that can support this fu
Whereas minutiae are expected to cluster, pores are expected to be spread out over the fin

Two events are independent if “the probability of either one is unaffected by the occurrence
other,”  (Lapin, 1990). An event is the placement of a pore at a given position, thus:

       fX,Y (x,y) = fX(x)fY(y) Eq. 26

wherefX(x) andfY(y) are the probability density functions of the independent random variable

If pores were indeed placed independently of each other, what would the frequency distribut
intra-ridge distances look like? In order to plot such a distribution, a vector of zeroes was us
represent a one-dimensional “ridge.” 3370 “pores” (ones) were substituted for zeroes at ra
intervals along the ridge, simulating a situation where the placement of one pore was en
independent of the placement of other pores. The distances between pores was calculated
frequency of these distances was plotted (Figure 23).

In order to prove that pore placement is a dependent phenomenon, this calculated di
distribution should be compared to a measurement of actual intra-ridge distances. However

Figure 23.Distribution of distance measured between consecutive intra-ridge pores. This data was
simulated using a model for which the pores are assumed to be independent and occurring at a
random position on a one-dimensional axis. Therefore, there is no constraint on the placement of
any particular pore and no influence on the position of a pore from its neighboring pores. The
distribution decreases monotonically with distance, and there are numerous pores that are close
together.
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ridge positions would have to be measured in the one-dimensional longitudinal direction
Unfortunately, the intra-ridge distances obtained in this study were of a two-dimensional n
and cannot be used justifiably in a comparison.

Had the data been obtained in a manner suitable to comparison, independence could be pr
disproved by virtue of a chi square analysis. The chi square statistic is defined by Lapin as

wherefij are the actual intra-ridge distance frequencies obtained, andfij are the calculated distance
frequencies.

The simulated distribution obtained in Figure 23 demonstrates a preponderance of small dis
between pores. If a transverse variation were allowed to be added to the ridges in the an
(simulating a two-dimensional process), it is surmised that many of the distance measure
between pores would increase, thereby changing the shape of the distribution.

Although most of the discussion thus far has concerned pore distribution along a given ridg
discussion of dependence bids us to look at the spatial distribution of pores across ridg
addition to an expected distance between nearest neighbor intra-ridge pores, there exists
expected linear relationship between the inter-ridge pores. As shown in Figures 24 and 25,
on adjacent ridges exhibit some degree of alignment. Inherent in this relationship is a
deviation∆ that measures the difference between the expected linear relationship and the
pore pattern on the print. If pores were generated independently of each other, large∆s would
result, and no visible linear pattern would be evident.

χ2 1
n
--- fij f̂ ij–( )2

f̂ ij
----------------------------

j
∑

i
∑= Eq. 27

Figure 24. Spatial dependence.Intra-ridge: If the positions of intra-ridge pores were independent
random variables, then their spacing would differ from the regularity observed in real fingerprints.
Inter-ridge: The location of pore p32 would depend on the location of all the surrounding pores if
pore positions were not independent random variables. p32 depends on the position of p31 and p33
but may also depend on p21, p22, p23 and p41,p42,p43.
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8.2  Degree of alignment of inter-ridge pores
Data from live-scanned fingerprints were examined to study alignment of adjacent pores a
ridges. Frequency distributions of the alignment between nearest neighbor pores on
consecutive ridges and three alternating ridges were obtained (where ridges 2 and 4 are sk
The degree of alignment may indicate a measure of dependence. The data are presented i
26. Here, the plots for both three consecutive ridges and three alternating ridges are comp
a simulation in which pores are constrained to occur at random positions in sweat gland
The model includes the possibility of empty sweat gland units.

Figure 25. Dependence - pores on adjacent ridges demonstrate a high degree of alignment.

Figure 26.Frequency of degree of inter-ridge deviations from alignment. These plots demonstrate
that most deviations from alignment are between 0 and 10 pixels (0.22 mm), evincing dependence.
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Real data:  deviations from linear alignment for 3 ridges
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Real data:  deviations from linear alignment for 5 ridges
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MATLAB simulation:  Uniform distribution with skipped pores
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All three plots show a maximum frequency of occurrence for deviations close to 0. As the d
of deviation increases, there is a marked decrease in probability of occurrence for all three
However, the plot of frequency of deviations for three alternating ridges follows the simula
more closely than the plot for three consecutive ridges. This can be attributed to a greater
of alignment among pores on three consecutive ridges; the more proximal the ridges, the g
the degree of alignment between the pores across those ridges.

8.3  Dependence determination:  Ridge-independent distributions
The effect of dependence among pores is evident also in the ridge-independent configu
studies discussed in section 5.4.3.1 and 5.4.3.2. Here, the probability of pore occurrence
pixel by 5 pixel area was found (the binomial distribution discussed in Section 5.4.1) as w
the pore density for 20 pixel by 20 pixel area (Figure 27).

If the occurrence of each pore were a phenomenon independent of other pores, the densi
larger area could be determined by using the data obtained from the binomial probability a

    (Ppore)
# cells with pores(Pno pore)

# cells with no pores= (0.067)#cells with pores(0.933)#cells with no pores

However, when this extrapolation is attempted for a 20 by 20 pixel area, the resulting proba
density function shows a higher incidence of empty cells than was detected in the actual d
This increase in empty cells is compensated by a reduction in the number of cells that conta
pore (Figure 28).

The independence assumption does not account for phenomena that determine the actua
distribution of pores; ridge flow is one such factor.  Perhaps the ridge flow in a print constric
spatial distribution so that there are fewer possible empty cells; this would account fo
disparity between Figure 27 and Figure 28.

Figure 27.Measured density of pores in a 20 pixel by 20 pixel area. This distribution was obtained
from actual data; the number of pores in a 20x20 pixel area was tallied and the frequencies of the
individual densities was plotted.
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Interestingly enough, when the density of pores in a 40 by 40 pixel area is determined
compared to an extrapolation from the binomial distribution, the real density is similar to
extrapolation. It is proposed that the degree to which dependence affects pores is high
smaller areas, much like it is greater in an inter-ridge capacity for more proximal ridges.

9.  Conclusion

Recognition errors in automated fingerprint recognition systems, like other biometric sys
can be grouped into two classifications: false accepts and false rejects. When address
problem of a false accept, the question is: how does one differentiate an authorized user fr
unauthorized user? The uniqueness analyses in this study provide answers to this qu
Given a certain number of pores along a ridge or a number of pores in a constellation
probability of someone else having an identical configuration is sufficiently low to preclu
false accept.

Still, false accepts persist. The value of the uniqueness of a configuration is reduced when
an automated system, for many parameters which were designed to decrease the number
rejects actually increase the probability of a false accept. For example, automated ma
requires accommodation of phenomena such as plasticity and distortion; therefore, para
such as search areas are built in to allow a degree of flexibility in feature detection. Thu
possibility exists that features in an impostor’s print may be falsely detected as matching fe
in an enrolled user’s print.

On the other side of the coin, however, is the question of false rejects. The problem that m
addressed in this case is: How does one recognize an authorized user as such, regar
changes that have occurred since the enrollment procedure? These changes can
differences in location, orientation, shape or size of respective features due to distorti

Figure 28. The binomial distribution discussed in Section 5.4.1 was extrapolated to produce this
plot, which shows a theoretical frequency distribution of pore densities, assuming that pores occur
independently of each other.
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plasticity. Errors can occur as a result of the processing and feature detection stage or as
of some features being physiologically unreliable.

Performance is defined by these error rates. In this paper, a model for an automated ma
system was developed, which incorporates the parameters determining the error rates. Fr
model, performance of a generic automated fingerprint recognition system can be predicte
February 10, 1999 45
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A.1  Glossary

attribute  - a sub-feature - the position, shape, and size are attributes of a pore.

authentication - confirmation of proper identity.

dependence- the ability of a feature to affect the attributes of another feature - cellular
biological dependence may produce a measured dependence of the pore positions.

dermis - the layer of skin directly beneath the epidermis; contains living elements such as s
glands, nerves, and blood vessels.

distribution (probability)  - the probability density function (pdf) of a random variable.

distribution (spatial)  - the way that a set of points is positioned in space or in an image.

dpi - refers to scanning resolution measured in dots (pixels) per inch.

EER - Equal Error Rate: the value at which the FAR and FRR are equal.

epidermis - the outermost layer of skin; acts as a protective layer for the dermis.

FAR - False Accept (imposter) error Rate: fraction of attempts for which the system allows a
to an imposter or invalid user.

FRR - False Reject (valid user) error Rate: fraction of attempts for which a fingerprint sys
denies access to a valid user.

feature: a characteristic; pores and minutia points are fingerprint features.

feature area- search area - The area assigned to an individual feature in which no other feat
assumed to exist. A small area of fingerprint surrounding the feature location in which the fea
exact position is not important. Related to resolution and search area.

feature characteristic (sub-feature)- attributes of features such as shape, size, and location
pores; type, orientation, and position for minutiae.

feature configuration - a feature set for which the specific arrangement of the features within
area occupied by the set is known.

feature density - the number of features per unit area [features/mm2].

feature position or location - defined as the center of mass of a pore or the center of the ridg
the point at which it ends (for end points) or branches (for bifurcations).

feature set: {a,b,c,...} a group of features associated with a specified area of fingerprint.
February 10, 1999 47



Roddy and Stosz:  Fingerprint Features - Statistical Analysis and System Performance Estimates

hes
losures,

tant

o the
f valid

the
live-

same

ger.

se of
osed to

nds to

does
print

ging

tion
Galton feature - any of a set of 10 distinct fingerprint features which include minutiae (branc
and ends) as well as special ridge structures such as ridge islands, dots, bridges, spurs, enc
double bifurcations, deltas, and trifurcations.

homogeneous: uniformly spatially distributed - the density of pores (or sweat glands) is cons
over the entire area of print

identification: a scenario in which the identity of the user who presents a live-scan image t
system is unknown. The system must determine who the unknown user is from a database o
users.

inked fingerprint - an image of the fingerprint resulting from applying ink to the surface of
finger and then rolling the finger on paper - results in a rolled fingerprint impression unlike a
scan fingerprint.

inter-ridge pores - pores which are not on the same ridge.

intra-ridge pores - pores which are on the same ridge.

intra-ridge separation - measured value of separation between sequential pores on the
ridge.

intra-ridge separation (adjusted) - intra-ridge separation corrected for missing pores.

isotropic - having the same properties independent of direction or orientation.

latent - the fingerprint impression left on an object’s surface resulting from contact with a fin

live-scan - an image of the fingerprint acquired using an electronic scanner for the purpo
real-time fingerprint processing or matching. A live-scan represents a pressed finger as opp
a rolled print.

match - of a feature: a feature represented in the enrolled template (or fingerprint) correspo
a feature from the live-scan fingerprint.

mismatch - of a feature: a feature represented in the enrolled template (or fingerprint) which
not correspond to a feature from the live-scan fingerprint, or a feature from the live-scan
which does not correspond to a feature in the enrolled template.

minutia - a ridge structure which differs from the usual (normal) continuous and non-diver
flow, examples are ridge branches (bifurcations) and ridge ends.

MxN pixels - an area of fingerprint M pixels in width and N pixels in height.

measurement accuracy- the accuracy of determined locations of features; higher resolu
February 10, 1999 48



Roddy and Stosz:  Fingerprint Features - Statistical Analysis and System Performance Estimates

o be

of the

ill

a

e of

ideo

and

ected
asing
acy of

hich
he skin
allows more precise estimation of an actual feature’s position, shape, and size.

performance: measure of FRR and FAR for a given system; match time and cost should als
considered but are not addressed in this paper.

pixel - can be used as a unit of length or area; magnitude is established by the magnification
input image and the dimensions of the image produced by the framegrabber.

pore - opening of a sweat gland which is visible on the surface of the finger ridges.

ppi - refers to scanning resolution measured in pixels per inch of fingerprint.

ppmm - refers to scanning resolution measured in pixels per millimeter of fingerprint.

regular distribution  - uniform distribution of objects in space.

reliability - inherent - (key to FRR), the probability that a given feature (a pore for example) w
be visible in different images of the same fingerprint.

reliability - algorithm : (key to FRR), the probability that the algorithm will correctly detect
visible (real) fingerprint feature.

resolution of database images - 1100 ppi where 1 pixel corresponds to 23.1 microns.

resolution - scanning- number of samples per unit length (or area), determined by the degre
magnification of the fingerprint image on the CCD sensor.

resolution - sensor- defined as the number of active pixels on the CCD imaging sensor in a v
camera (sometimes quoted without regard to CCD dimensions).

scanned area- the area of fingerprint incident on the active area of the CCD sensor device
represented in the fingerprint image.

search area- a small area in which a feature is searched for; designed to account for det
feature position deviations due to noise, plasticity, distortion, or processing variations. Incre
the search area is equivalent to reducing the scanning resolution reducing the accur
detection of the feature position.

sub-feature - an attribute of a fingerprint feature.

subcutaneous layer - the layer of skin beneath the dermis; contains fat.

sweat gland - a structure within the dermis that produces sweat. Composed of a coil, w
secretes the sweat, and a duct, which carries sweat to the surface. The duct opening on t
surface comprises a pore.
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template - a set of data which is extracted from a fingerprint and then used to represent that fi
Fingerprints are matched against templates or templates are matched against templates.

uniform distribution - defining the position of a feature as a random variable, a uniform
means that the feature has an equally likely probability of occurring anywhere in image (fla
pdf in x,y). In one model of pore distribution, if there are N pores per fingerprint, then each p
position is assumed to be a uniformly distributed random variable.

uniform distribution of objects  - a homogeneous spatial distribution.

uniqueness - (key to FAR) probability of occurrence of a configuration of features.

verification: a scenario in which a user claims an identity (enters a PIN) and the system
authenticates the user’s claim by matching his live-scan print against the template corresp
to his claimed identity.
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A.2 Vital statistics of fingerprint features

Pore density
There are approximately 2700 to 3350 pores/in2 (4.19 to 5.19 pores/mm2)

Intra-ridge pore density
The average separation of pores on a ridge is 0.39 mm, (σ = 0.207mm).
There are 25.6 pores/cm of ridge on average.

Features
Placement:

Pores are found on the ridge only.
The pore’s exact position on the ridge is random.
The position is defined as the center of mass of the pore.

Size:
Pores are generally less than 220µm across.
The average diameter of a pore is 109µm assuming a circular pore shape.
The fraction of print area occupied by pores is 3.9%.

Shape:
The shape of each pore is unique.
There is a lot of variation in the general shape of pores ranging from square to circular.

Pore reliability
Pore reliability is a function of the sub-feature type (position, shape, and size), ca
method, and skin condition.

Ridge width
The average width of a ridge is 0.48 mm for males and shorter for females.

Galton feature density
The density of Galton features is approximately 0.234 features/mm2.

Minutia (branch and end point) density
The density of minutia is approximately 0.241 minutiae/mm2.

Ridge (Galton) feature placement
The placement of Galton features is random.

Ridge (Galton) feature reliability
The reliability of Galton features is relatively high and depends on the quality of the p
skin condition, and capture method. With respect to minutiae, sometimes it is difficu
distinguish between ridge bifurcations and ends.
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A.3  Osterburg

Table 1: Osterburg probability of feature occurrence

Feature Frequency Probability of Occurrence

Empty cell 6584 0.766

End point 715 0.0832

Branch point 328 0.0382

Island 152 0.0177

Bridge 105 0.0122

Spur 64 0.00745

Dot 130 0.0151

Lake 55 0.00640

Trifurcation 5 0.000582

Double bifurcation 12 0.00140

Delta 17 0.00198

Broken ridge 119 0.0139

Other multiple occurrences 305 0.0355

Total 8591 1.00
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A.4  Resolution and intra-ridge pore configurations

Table 2:   Probabilistic values of intra-ridge pore configurations

#
pore

r=1 pix r=2 pix r=3 pix r=4 pix r=5 pix r=6 pix r=7 pix

probability= (max probability at r)number of pores

2 0.0645 0.1246 0.1848 0.2444 0.2879 0.3450 0.3839

3 0.0042 0.0155 0.0341 0.0597 0.0829 0.1190 0.1474

4 2.6821e-04 0.0019 0.0063 0.0146 0.0239 0.0411 0.0566

5 1.7297e-05 2.4123e-04 0.0012 0.0036 0.0069 0.0142 0.0217

6 1.1155e-06 3.0064e-05 2.1531e-04 8.7115e-04 0.0020 0.0049 0.0083

7 7.1936e-08 3.7467e-06 3.9781e-05 2.1287e-04 5.6934e-04 0.0017 0.0032

8 4.6391e-09 4.6694e-07 7.3500e-06 5.2016e-05 1.6391e-04 5.8215e-04 0.0012

9 2.9918e-10 5.8192e-08 1.3580e-06 1.2710e-05 4.7187e-05 2.0086e-04 4.7223e

10 1.9294e-11 7.2523e-09 2.5091e-07 3.1058e-06 1.3585e-05 6.9304e-05 1.8131e

11 1.2443e-12 9.0382e-10 4.6358e-08 7.5891e-07 3.9110e-06 2.3912e-05 6.9614e

12 8.0242e-14 1.1264e-10 8.5652e-09 1.8544e-07 1.1259e-06 8.2505e-06 2.6728e

13 5.1748e-15 1.4038e-11 1.5825e-09 4.5314e-08 3.2415e-07 2.8467e-06 1.0262e

14 3.3372e-16 1.7495e-12 2.9239e-10 1.1073e-08 9.3319e-08 9.8221e-07 3.9401e

15 2.1522e-17 2.1803e-13 5.4022e-11 2.7056e-09 2.6866e-08 3.3890e-07 1.5128e

16 1.3879e-18 2.7172e-14 9.9813e-12 6.6113e-10 7.7344e-09 1.1693e-07 5.8082e

17 8.9507e-20 3.3863e-15 1.8442e-12 1.6155e-10 2.2267e-09 4.0345e-08 2.2301e

18 5.7723e-21 4.2203e-16 3.4073e-13 3.9475e-11 6.4103e-10 1.3920e-08 8.5622e

19 3.7225e-22 5.2595e-17 6.2954e-14 9.6459e-12 1.8455e-10 4.8030e-09 3.2874e

20 2.4007e-23 6.5547e-18 1.1632e-14 2.3570e-12 5.3130e-11 1.6572e-09 1.2622e
21 1.5482e-24 8.1689e-19 2.1491e-15 5.7594e-13 1.5296e-11 5.7179e-10 4.8461e

22 9.9841e-26 1.0181e-19 3.9706e-16 1.4073e-13 4.4035e-12 1.9729e-10 1.8606e

23 6.4388e-27 1.2688e-20 7.3362e-17 3.4389e-14 1.2677e-12 6.8071e-11 7.1439e

24 4.1523e-28 1.5812e-21 1.3555e-17 8.4030e-15 3.6497e-13 2.3487e-11 2.7429e

25 2.6778e-29 1.9706e-22 2.5044e-18 2.0533e-15 1.0507e-13 8.1037e-12 1.0531e

26 1.7269e-30 2.4559e-23 4.6271e-19 5.0174e-16 3.0249e-14 2.7961e-12 4.0434e

27 1.1137e-31 3.0606e-24 8.5492e-20 1.2260e-16 8.7084e-15 9.6474e-13 1.5524e

28 7.1822e-33 3.8143e-25 1.5796e-20 2.9958e-17 2.5071e-15 3.3287e-13 5.9605e

29 4.6318e-34 4.7537e-26 2.9184e-21 7.3203e-18 7.2176e-16 1.1485e-13 2.2885e

30 2.9870e-35 5.9243e-27 5.3921e-22 1.7888e-18 2.0779e-16 3.9627e-14 8.7866e
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A.5 Ridge-independent pore configurations

By assuming that pores occur independently of each other, in a way similar to the treatm
minutiae, the probability of a configuration of pores can be calculated. For a given are
fingerprint, and a defined “cell size,” there will be N cells or grid divisions in the print. In e
cell, there can be either one pore or no pores present. For an area of print about 0.46 mm
mm, the number of cells is 16. The number of configurations possible (using n pores
probability of a given configuration of n pores, and the probability of n pores in the total ana
area are provided in Table 3.

For an area of print about 0.92 mm x 0.92 mm, the number of cells is 64. The numb
configurations possible (using n pores), the probability of a given configuration of n pores, an
probability of n pores in the total analysis area are provided in Table 4. The entries in the t
are plotted in figure A.5.1 for a more insightful description of the underlying process
configuration probabilities.

Table 3:  Calculated probability of n pores occurring in a 4x4 grid area

# Pores
 n

# Empty
Cells
 m

# configurations
combination (N n)

configuration
probability

pnqm

p(n pores in 20x20
pixel region) =

(N n)pnqm

0 16 1.00000e+00 3.29690e-01 3.29690e-01

1 15 1.60000e+01 2.36755e-02 3.78808e-01

2 14 1.20000e+02 1.70017e-03 2.04021e-01

3 13 5.60000e+02 1.22092e-04 6.83713e-02

4 12 1.82000e+03 8.76756e-06 1.59570e-02

5 11 4.36800e+03 6.29611e-07 2.75014e-03

6 10 8.00800e+03 4.52132e-08 3.62067e-04

7 9 1.14400e+04 3.24682e-09 3.71436e-05

8 8 1.28700e+04 2.33159e-10 3.00075e-06

9 7 1.14400e+04 1.67434e-11 1.91545e-07

10 6 8.00800e+03 1.20237e-12 9.62857e-09

11 5 4.36800e+03 8.63438e-14 3.77150e-10

12 4 1.82000e+03 6.20046e-15 1.12848e-11

13 3 5.60000e+02 4.45264e-16 2.49348e-13

14 2 1.20000e+02 3.19750e-17 3.83700e-15

15 1 1.60000e+01 2.29617e-18 3.67387e-17

16 0 1.00000e+00 1.64891e-19 1.64891e-19

Each grid is of area 5x5 pixels. N = 16, total number of grids. Binomial distribution: P(pore in cell)
= p = 0.067, P(cell empty) = q = 0.933.
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Table 4:  Calculated probability of n pores occurring in an 8x8 grid area

# Pores
 n

# Empty Cells
 m

# configurations
combination (N n)

configuration
probability

pnqm

p(n pores in 64x64
pixel region) =

(N n)pnqm

0 64 1.00000e+00 1.18148e-02 1.18148e-02

1 63 6.40000e+01 8.48435e-04 5.42998e-02
2 62 2.01600e+03 6.09272e-05 1.22829e-01
3 61 4.16640e+04 4.37527e-06 1.82291e-01
4 60 6.35376e+05 3.14194e-07 1.99631e-01
5 59 7.62451e+06 2.25627e-08 1.72030e-01
6 58 7.49744e+07 1.62026e-09 1.21478e-01
7 57 6.21216e+08 1.16353e-10 7.22803e-02
8 56 4.42617e+09 8.35546e-12 3.69827e-02
9 55 2.75406e+10 6.00017e-13 1.65248e-02
10 54 1.51473e+11 4.30880e-14 6.52668e-03
11 53 7.43596e+11 3.09421e-15 2.30084e-03
12 52 3.28421e+12 2.22200e-16 7.29751e-04
13 51 1.31369e+13 1.59564e-17 2.09618e-04
14 50 4.78557e+13 1.14585e-18 5.48357e-05
15 49 1.59519e+14 8.22854e-20 1.31261e-05
16 48 4.88527e+14 5.90902e-21 2.88672e-06
17 47 1.37937e+15 4.24335e-22 5.85315e-07
18 46 3.60169e+15 3.04721e-23 1.09751e-07
19 45 8.71988e+15 2.18824e-24 1.90812e-08
20 44 1.96197e+16 1.57141e-25 3.08306e-09
21 43 4.11080e+16 1.12845e-26 4.63882e-10
22 42 8.03474e+16 8.10354e-28 6.51099e-11
23 41 1.46721e+17 5.81926e-29 8.53810e-12
24 40 2.50649e+17 4.17889e-30 1.04744e-12
25 39 4.01039e+17 3.00092e-31 1.20348e-13
26 38 6.01558e+17 2.15500e-32 1.29636e-14
27 37 8.46637e+17 1.54754e-33 1.31020e-15
28 36 1.11877e+18 1.11131e-34 1.24330e-16
29 35 1.38882e+18 7.98044e-36 1.10834e-17
30 34 1.62029e+18 5.73086e-37 9.28565e-19
31 33 1.77709e+18 4.11541e-38 7.31345e-20
32 32 1.83262e+18 2.95533e-39 5.41601e-21
33 31 1.77709e+18 2.12226e-40 3.77145e-22
34 30 1.62029e+18 1.52403e-41 2.46936e-23
35 29 1.38882e+18 1.09442e-42 1.51996e-24
36 28 1.11877e+18 7.85921e-44 8.79265e-26
37 27 8.46637e+17 5.64381e-45 4.77825e-27
38 26 6.01558e+17 4.05289e-46 2.43805e-28
39 25 4.01039e+17 2.91044e-47 1.16720e-29
40 24 2.50649e+17 2.09003e-48 5.23863e-31
41 23 1.46721e+17 1.50088e-49 2.20211e-32
42 22 8.03474e+16 1.07780e-50 8.65984e-34
43 21 4.11080e+16 7.73982e-52 3.18169e-35
44 20 1.96197e+16 5.55807e-53 1.09048e-36
45 19 8.71988e+15 3.99133e-54 3.48039e-38
46 18 3.60169e+15 2.86623e-55 1.03233e-39
47 17 1.37937e+15 2.05828e-56 2.83912e-41
48 16 4.88527e+14 1.47808e-57 7.22080e-43
49 15 1.59519e+14 1.06143e-58 1.69318e-44
50 14 4.78557e+13 7.62225e-60 3.64768e-46
51 13 1.31369e+13 5.47364e-61 7.19064e-48
52 12 3.28421e+12 3.93070e-62 1.29092e-49
53 11 7.43596e+11 2.82269e-63 2.09894e-51
54 10 1.51473e+11 2.02701e-64 3.07038e-53
55 9 2.75406e+10 1.45562e-65 4.00887e-55
56 8 4.42617e+09 1.04530e-66 4.62668e-57
57 7 6.21216e+08 7.50646e-68 4.66314e-59
58 6 7.49744e+07 5.39049e-69 4.04149e-61
59 5 7.62451e+06 3.87099e-70 2.95144e-63
60 4 6.35376e+05 2.77981e-71 1.76622e-65
61 3 4.16640e+04 1.99622e-72 8.31704e-68
62 2 2.01600e+03 1.43351e-73 2.88996e-70
63 1 6.40000e+01 1.02942e-74 6.58831e-73
64 0 1.00000e+00 7.39243e-76 7.39243e-76

Each grid is of 5x5 pixels. N = 64, total number of grids. Binomial distribution: P(pore in cell) = p
= 0.067, P(cell empty) = q = 0.933.
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Figure A.5.1.Figures relate to a 40x40 pixel area divided into 64 grids of area 5x5 pixels each. For
this situation, the probability that a grid contains one pore is 0.067 and the probability that the grid
is empty is 0.933. Figure A is a plot of the number of possible configurations of pores as a function
of the total number of pores. Figure B is a plot of the probability of a particular configuration of n
pores. Figure C is a plot of A multiplied by B, which is the probability of a given number of pores,
n, occurring inside the 40x40 pixel area (binomial distribution).
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A.6 Size of Pores

The size of an individual pore may vary from one scan to the next leading to a relatively unre
pore sub-feature. In addition, there is a large variation in the size of pores between individu
some cases, the range of pore sizes for different prints of the same finger will vary signific
Figure A.6.1.A shows the general trend of a decreasing number of pores as pore size inc
The caption in Figure A.6.1 provides details of the nature of pore size.

Figure A.6.1. Distribution of the area of pores (measured in units of pixels, where the resolution
was 1100 pixels/inch and 1 pixel has dimensions 23.1µm x 23.1µm). For plots A and B no pores
smaller than 3 pixels in area were allowed in order to reduce noise effects. Pores were extracted and
measured automatically. Figure A represents 40 images (13,197 pores withµ = 17.4,σ = 13.6, max
= 141). Figure B shows the variation in pore area between three different people’s fingers: small
pores (µ = 10.2,σ = 7.3), medium pores (µ =18.8,σ = 11.0), and large pores (µ = 35.4,σ = 19.6).
Figure C demonstrates variation in the distribution of pore sizes for different live-scan images of
the same finger (reliability of pore size): plot of size for 10 images together (µ = 11.0,σ = 9.2),
live-scan when pores are relatively large (µ = 14.8,σ = 10.2), distribution when pores are relatively
small (µ = 8.4,σ = 6.7).
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A.7  Tables and images of reliability of pores

Visibility is the fraction of instances in which a given pore was detectable by eye. Absolute s
the observed size of a pore. Relative size is the size of the pore in relation to all other pores
image. Shape - fraction of occurrences for which the pore’s shape is consistent. For clarity
means that the pore is in focus and high contrast; fuzzy denotes an out of focus pore. Sh
describes pore’s which were mostly clear but parts were fuzzy. Image quality (range [1,5] wh

  Table 5:  Pore reliability for various parameters

Print Type Detection Size Shape

latent Variable - depends on
surface on which latent
is found and method of
latent extraction

Variable Variable

inked Good - pores can fill in
if too much ink is used

Best - Inked impression
should provide accurate
representation of size of
pore

Variable - bleeding of
ink can cause problems

live-scan Best - pores can fill in if
the finger is oily or wet.
Pores may not show up
for very dry fingers.

Variable - what is seen
in the live-scan image
depends on the condi-
tion of the finger (oily,
dry, neutral)

Variable - inherent vari-
ability of pore shape -
again mostly due to
amount of moisture on
finger

Table 6:  Observed inherent reliability of pores

Print
Vis.
[0,1]

Size:  Absolute
Range [0,1]

Size:  Relative
[0,1]

Shape
[0,1]

Clarity
[0,1]

Quality
[1,5]         [0,1]

Density
[1,5]

Small Med. Large Small Med. Large Clear Shad. Fuzzy Image Print

W52 .93 .48 .52 0 .82 .18 0 .85 .56 .33 .11 4.24 .0024 3.91

L253 .98 .70 .30 0 .62 .38 0 .94 .96 .02 .02 4.09 .0493 3.59

W254 .75 .62 .38 0 .62 .36 .2 .91 .71 .17 .12 3.48 .195 2.84

L92 .94 .13 .83 .04 .28 .71 0 - .57 .37 .07 3.23 .186 3.29

L19 .95 .08 .60 .33 .17 .71 .12 - .37 .46 .17 2.69 .128 2.83

A26 .79 .175 .65 .175 .175 .635 .19 - .30 .40 .30 2.58 .245 2.39

L133 1.00 .14 .86 0 .16 .84 0 .95 .74 .21 .05 3.79 .035 3.74

L255 .85 .73 .27 0 .79 .18 0 .85 .79 .18 .03 3.82 .0518 3.44

L112 .91 .65 .35 0 .65 .35 0 1.00 .71 .23 .06 3.59 .0874 2.79

W259 1.00 .83 .17 0 .83 .17 0 1.00 1.00 0 0 3.83 .0372 3.72
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is high quality) is determined by the amount of noise and degradation in the image, wherea
quality (range [-1,1], wet-neutral-dry) is a measure of the condition of the skin. Density is
relative number of pores per image.

The percentage of algorithm detection errors attributable to various causes in eight pri
varying quality. The total error rate (missed detects plus false detects) is the sum of eac
Quality is the image quality. # pores is the number of true pores detected in the image acco
for missed and false detected pores (errors). Processing represents the percentage o
erroneously discarded during the process of converting the image from gray level to binary.
represents the percentage of pores which are so large that they appear as a break in the
flow of the ridge. NN is the percentage of close but separated pores for which only one p
detected. Non-isolated is the percentage of pores on the edge of a ridge which are not de
Flow non-isolated is the percentage of missed detected pores which occur on the center of
but appear to touch the edge of the ridge because of noise. 2 as 1 represents the number of
connected pores incorrectly detected as a single pore. Mid-valley is the percentage of insta
which the algorithm falsely detected a pore in the middle of a valley. Bridge is the percenta
falsely detected pores occurring at breaks in a ridge. Noise represents the percentage of in
in which noise was classified as a pore. Washed out represents a different noise process
causes low contrast areas in the image.

Table 7:  Algorithm reliability

Missed Detect False Detect

Quality # pores Proc. Flow NN nonisol.
flow-

nonisol
2 as 1

mid-
valley

unknown bridge noise
washed

out

Excel. 486 5.8 .62 2.3 1.6 1.0 .21 .41 .21 .21 .21 .21

Excel. 407 4.1 0 .25 .41 .41 .25 .98 0 0 .98 0

good 504 .4 4.2 .2 2.2 .79 0 0 .2 0 .4 .21

Good 427 .47 4.0 .47 2.8 .47 0 0 0 0 0 .47

OK 286 5.9 3.5 0 2.5 .35 0 0 0 0 .7 0

OK 489 5.5 3.1 .61 1.2  .2 0 .2 0 0 0 0

Poor 352 3.4 4.3 .85 1.4 0 0 1.1 0 0 1.1 0

Poor 411 14.1 4.4 0 4.1 2.4 0 0 0 0 .49 0
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a b c
Figure A.7.1. Reliability of pores. The fingerprints in figure A.7.1, have a very low detectable pore density.
For these prints, the use of poroscopy may not be reliable.a andb are images of the same finger showing a
large disparity in pore density. Figurec is a print which also has a very low pore density, although the
algorithm was able to find at least 84 pores.
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