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Abstract

In this paper, we propose a new approach for extracting and representing prosodic features directly from the speech signal. We
hypothesize that prosody is linked to linguistic units such as syllables, and it is manifested in terms of changes in measurable parameters
such as fundamental frequency (F 0), duration and energy. In this work, syllable-like unit is chosen as the basic unit for representing the
prosodic characteristics. Approximate segmentation of continuous speech into syllable-like units is obtained by locating the vowel onset
points (VOP) automatically. The knowledge of the VOPs serve as reference for extracting prosodic features from the speech signal. Quan-
titative parameters are used to represent F 0 and energy contour in each region between two consecutive VOPs. Prosodic features
extracted using this approach may be useful in applications such as recognition of language or speaker, where explicit phoneme/syllable
boundaries are not easily available. The effectiveness of the derived prosodic features for language and speaker recognition is evaluated in
the case of NIST language recognition evaluation 2003 and the extended data task of NIST speaker recognition evaluation 2003,
respectively.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Speech is primarily intended to convey some message. It
is conveyed through a sequence of legal sound units in a
language. But speech cannot be merely characterized as a
sequence of sound units. There are some characteristics
that lends naturalness to speech. The variation of pitch
provides some recognizable melodic properties to speech.
This controlled modulation of pitch is referred as intona-
tion. The sound units are shortened or lengthened in accor-
dance to some underlying pattern giving rhythmic
properties to speech. Some syllables or words may be made
0167-6393/$ - see front matter � 2008 Elsevier B.V. All rights reserved.
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more prominent than others, resulting in linguistic stress.
The information gleaned from melody, timing and stress
in speech increases the intelligibility of spoken message,
enabling the listener to segment continuous speech into
phrases and words with ease (Shriberg et al., 2000). It is
also capable of conveying many more lexical and nonlexi-
cal information such as lexical tone, prominence, accent
and emotion. The characteristics that make us perceive
these effects are collectively referred to as prosody. Pro-
sodic cues include stress, rhythm and intonation. Each
cue is a complex perceptual entity, expressed primarily
using three acoustic parameters: pitch, energy and
duration.

Prosodic characteristics such as rhythm, stress and into-
nation in speech conveys some important information
regarding the identity of the spoken language. Results of
perception studies on human language identification,
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confirm that prosodic information, specifically pitch and
intensity, are used for language identification under condi-
tions where the acoustics of sound units and phonotactics
are degraded (Mori et al., 1999; Kometsu et al., 2001). A
study using resynthesis has revealed the importance of
rhythm and intonation for language discrimination
(Ramus and Mehler, 1999). Since each speaker has unique
physiological characteristics of speech production and
speaking style, speaker-specific characteristics are also
reflected in prosody. It is generally recognized that human
listeners can better recognize those speakers who are famil-
iar to them, than those who are relatively less familiar. This
increased ability is due to speaker-specific prosody and idi-
osyncrasies that are recognized by the listener, either con-
sciously or otherwise (Doddington, 2001). But it is very
difficult even for a listener to describe the nature of lan-
guage-specific and speaker-specific prosodic features that
he/she will be using for recognition. Distinguishing the lan-
guage-specific and speaker-specific aspect of prosody using
acoustic parameters is even more difficult. Therefore, it is a
challenging task to extract and represent prosodic features
for recognizing a language or a speaker.

In general, there are two broad approaches for extract-
ing prosodic features from speech. The first approach uses
the explicit subword boundaries obtained using automatic
speech recognizer (ASR) for extracting the prosodic fea-
tures (Shriberg et al., 2005). But for applications like lan-
guage and speaker recognition, the use of ASR may not
be needed. In most of the ASR-free approaches, pitch
contour dynamics are represented using parameters
derived from linear stylized pitch segments (Sonmez
et al., 1998; Adami et al., 2003; Reynolds et al., 2003;
Peskin et al., 2003), which has the advantage that features
are derived directly from the speech signal. In this paper,
we propose a new technique for extraction and representa-
tion of prosodic features. The proposed technique com-
bines salient features of both approaches mentioned
above, namely, association with the syllabic pattern as in
the ASR-based approach, and extraction of features with-
out explicit speech recognition as in the ASR-free
approach.

In this paper, we address the issues related to language

and speaker recognition, focusing on prosodic features
extracted from the speech signal. The remaining part of this
paper is organized as follows: In Sections 2 and 3, we
describe language-specific and speaker-specific aspect of
prosody, respectively. In Section 5, automatic extraction
and representation of prosodic features employed in the
proposed approach is described. Section 6 describes the
prosodic features we use for language recognition, and dis-
cusses the results of experimental studies on NIST lan-
guage recognition evaluation (LRE) 2003 task. The
features used for capturing the speaker-specific prosodic
characteristics are described in Section 7, along with the
results of experimental studies on the extended data task
of NIST speaker recognition evaluation (SRE) 2003. The
final section summarizes the studies.
2. Language-specific aspect of prosody

There are a number of striking acoustic similarities in
the suprasegmental aspects of neutral sentences in different
languages. This is mostly due to identical constraints
imposed by the production and perception apparatus.
Pitch is a perceptual attribute of sound. The physical cor-
relate of pitch is the fundamental frequency (F 0) of vibra-
tion of vocal folds. The functions of intonation are
mostly defined as attitudinal, accentual, discourse and
grammatical (Roach, 1983). A comparison shows that lan-
guages differ greatly in this respect (Hirst and Di Cristo,
1998; Fox, 2000). Some functions that are performed by
intonation in one language may be expressed lexically
and/or syntactically in others (Hirst and Di Cristo, 1998).
As an illustration, samples of the F 0 contours of Farsi
and Mandarin are shown in Fig. 1. It can be observed that
in spite of speaker differences, Mandarin has more F 0 vari-
ations compared to Farsi.

Languages can be broadly categorized as stress-timed,
syllable-timed and mora-timed, based on their timing/
rhythmic properties. In stress-timed languages like English
and German, duration of the syllables are mainly con-
trolled by the presence of stressed syllables which is directly
encoded in the lexicon. But intervals between two stresses
are said to be near-equal (Abercrombie, 1967). Syllables
that occur in between two stressed syllables are shortened
to accommodate this property. In syllable-timed languages
such as French and Spanish, successive syllables are said to
be of near-equal duration (Abercrombie, 1967). The mora-
timing is exemplified by Japanese. Morae are subunits of
syllables consisting of one short vowel and any preceding
onset consonants. In mora-timing, successive morae are
said to be near-equal duration (Grabe and Low, 2002).
Languages are also classified as stress-accented and pitch-
accented, based on the realization of prominence. In
pitch-accented languages like Japanese, prominence of a
syllable is achieved through pitch variations, whereas in
stress-accented language, pitch variation is only one factor
that helps to assign prominence. Languages are also cate-
gorized as tonal and nontonal. Modern Standard Chinese
uses pitch patterns to distinguish one word from another
(Ashby and Maidment, 2005). A lexical tone language is
one in which an indication of pitch enters into the lexical
realization of at least some morphemes (Hyman, 2005).
We can identify languages which employ lexical tone such
as Mandarin Chinese or Zulu (tonal languages), those
which use lexically based pitch accents like Swedish or Jap-
anese (pitch-accented languages), and stress-accented lan-
guages such as English or German (Cummins et al.,
1999). There are many other languages which strictly do
not follow the rules of a class, which means that these clas-
sifications are rather a continuum (Grabe and Low, 2002).

In most of the languages, higher intensity, larger pitch
variation and longer duration help to assign prominence
to stressed syllables. In languages like English and French,
a longer duration syllable carries more pitch movements.
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Fig. 1. Variation in dynamics of F 0 contour for utterances in Farsi and Mandarin, spoken by three male speakers each. (a), (b) and (c) correspond to Farsi
(d), (e) and (f) correspond to Mandarin utterances (taken from Oregon Graduate Institute (OGI) multi-language telephone speech corpus).
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But such a correlation may not hold equally well for all
languages. Stress in some languages is what defines the
rhythm of speech (Ashby and Maidment, 2005). Therefore
it is possible that, the specific interaction between the
suprasegmental features, and relation between supraseg-
mental and segmental aspects are the most salient charac-
teristics that differentiate between languages (Cutler and
Ladd, 1983).

3. Speaker-specific aspect of prosody

Speaker characteristics vary due to difference in (a)
physiological characteristics of speech production organs
and (b) acquired/learned habits. Physiological difference
in the shape and size of oral tract, nasal tract, vocal folds
and trachea can lead to differences in vocal tract dynamics
and excitation characteristics. The distribution of funda-
mental frequency (F 0) values varies among speakers due
to differences in the physical structure of the vocal folds
as illustrated in Fig. 2.

It is not just the physiological aspects of speech produc-
tion organs of a speaker that influence the way an utterance
is spoken. Speaker characteristics are also influenced by the
speaking habits of a particular speaker. The acquired
speaking habits are mostly influenced by the social environ-
ment and also by the characteristics of the first/native lan-
guage in the ‘critical period’ (lasting roughly from infancy
until puberty) of learning. The prosodic characteristics as
manifested in speech give important information regarding
the speaking habit of a person. Dynamics of F 0 contour
corresponding to a sound unit is influenced by several fac-
tors such as identity of the sound unit, its position with
respect to the phrase/word, its context (the units that pre-
cede and follow), the speaking style of the speaker, intona-
tion rules of the language, type of the sentence
(interrogative or declarative), etc. The dynamics of F 0 con-
tour and energy contour can be different among speakers
due to different speaking style and accent. The dynamics
of F 0 contour will be different for two speakers, even when
they utter the same text as illustrated in Fig. 3. But when
the same text is repeated by a given speaker, the character-
istics of F 0 contour are consistent and this is true across
speakers as illustrated in Fig. 4. The presence of speaker-
specific information in temporal dynamics of F 0 contour
may be used for characterizing a speaker. This property
is used in text-dependent speaker verification, by compar-
ing F 0 contours using dynamic time warping (DTW). It
has been shown that the dynamics of F 0 contour can also
contribute to text-independent speaker verification task
(Sonmez et al., 1998; Adami et al., 2003).

4. Robustness of prosodic features

Most of the current speaker/language recognition sys-
tems rely on the spectral features derived through short-
time spectral analysis of the speech signal. The magnitude
of the short-time spectrum encodes information about
vocal tract shape of the speaker (Makhoul, 1975; Furui,
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Fig. 3. Variation in dynamics of F 0 contour of two different male speakers while uttering Sunday, Monday, Tuesday, Wednesday, Thursday, Friday,
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1981; Reynolds and Rose, 1995). Therefore, spectral fea-
tures are widely used for speaker modeling. The spoken
language recognition research has its main focus on spec-
tral information, using the acoustic property of sound units
(referred as acoustic-phonetics) and their sequencing
(referred as phonotactics) (Zissman, 1996; Navratil,
2001). Language and speaker recognition systems based
on spectral features perform well in favorable acoustic con-
ditions, but their performance degrade due to noise and
unmatched acoustic conditions (Reynolds, 1996). Prosodic
features derived from pitch, energy and duration are rela-
tively less affected by channel variations and noise
(Thyme-Gobbel and Hutchins, 1996). Though the systems
based on spectral features outperform the prosody-based
systems, their combined performance may provide the
needed robustness to recognition systems.
The effect of channel variations on spectral feature vec-
tors and F 0 contour are illustrated in Figs. 5 and 6, respec-
tively. The same utterance Don’t carry an oily rag like that

recorded through three different channels, available in
Texas Instruments and Massachusetts Institute of Technol-
ogy (TIMIT) database, is used for comparing the effect
of channel variations. Channels correspond to TIMIT,
NTIMIT and CTIMIT represent speech collected over
close-speaking microphone, noisy channel and cellular
environment, respectively. Fig. 5 shows the difference in
Euclidean distance of LPCC features due to variability in
the channel characteristics, whereas Fig. 6 illustrates the
robustness of F 0 contour characteristics against channel
variations. In Fig. 6, the F 0 contours remain the same for
all the cases except some durational variation of voiced
region in (b) and (c) compared to (a).
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5. Extraction of prosodic features from speech signal

Approaches used for prosodic feature extraction can be
broadly categorized into two, based on the use of auto-
matic speech recognizer (ASR). In the ASR-based
approach, syllabic/phone boundaries are obtained with
the help of ASR (Shriberg et al., 2005). In the ASR-free
approach, segment boundaries are estimated using cues
derived from the speech signal. In one approach, inflection
points and start or end of voicing are used to segment the
speech signal (Adami and Hermansky, 2003). The seg-
mented trajectories are then quantized and labeled into a
small set of classes that describe the dynamics of F 0 con-
tour and energy contour. N-grams of these labels are used
to model the characteristics of a speaker or a language
(Shriberg et al., 2005; Adami and Hermansky, 2003).
Recent approaches to automatic syllable-like segmentation
include the use of vowel detection (Rouas et al., 2005) and
group delay function of minimum phase signal (Nagarajan
and Murthy, 2006). In the present study, we use locations
of vowel onset points (VOP) for identifying the syllable-like
regions in continuous speech.
5.1. Choice of syllable as the basic unit

All spoken utterances can be considered as sequence of
syllables which constitute a continual rhythmic alternation
between opening and closing of mouth while speaking
(MacNeilage, 1998). Syllable of CV type provides an artic-
ulatory pattern beginning with a tight restriction and end-
ing with an open vocal tract, resulting some rhythm that is
especially suited both to the production and the perception
mechanisms (Krakow, 1999). It is demonstrated that the
tonal events are aligned to the segmental events such as
onset and/or offset of a syllable (Atterer and Ladd,
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2004). Therefore, syllable appears to be a natural choice for
the basic unit for representing prosody.
5.2. Association of prosody with sequence of syllable-like

units

For representing syllable-based rhythm, intonation, and
stress, the speech signal should be segmented. Segmenting
speech into syllables is typically a language-specific mecha-
nism, and thus it is difficult to develop a language indepen-
dent algorithm for this. In this work, segmentation into
syllable-like units is accomplished with the knowledge of
VOPs as illustrated in Fig. 7a, where VOP refers to the
instant at which the onset of vowel takes place in a syllable.
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Fig. 7. (a) Segmentation of speech into syllable-like units using automatically
‘12’).
There may be limitations in this approach, but since it pro-
vides a language-independent solution to the segmentation
problem, it is adopted in the present study. The F 0 contour
of speech signal is then associated with the locations of
VOPs as shown in Fig. 7b, for feature extraction.
5.3. Detection of vowel onset points

Vowel onset point is an important event in speech pro-
duction, which may be described in terms of changes in
the vocal tract and excitation source characteristics. For
extracting the VOPs from continuous speech, a technique
which relies on excitation source information is used in this
study (Mahadeva Prasanna et al., 2001). It uses the Hilbert
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e (S)

1.5 2
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detected VOPs and (b) F 0 contour associated with VOPs (marked as ‘1’ to
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envelope of linear prediction (LP) residual, which is defined
as

heðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ðnÞ þ r2

hðnÞ
q

ð1Þ

where rðnÞ is the LP residual of the speech signal, and rhðnÞ
is the Hilbert transform of rðnÞ, where Hilbert transform is
defined as

rhðnÞ ¼ IFT½RhðxÞ� ð2Þ
where

RhðxÞ ¼
jRðxÞ; �p 6 x < 0

�jRðxÞ; 0 6 x < p

�
ð3Þ

where IFT denotes the inverse Fourier transform, and RðxÞ
is the Fourier transform of r(n). As shown in Fig. 8b, the
Hilbert envelope approximately represents the strength of
excitation. The strength of excitation at the instants of glot-
tal closure for voiced sounds is generally higher compared
to the strength at random instants present in the unvoiced
sound. Also, the strength of excitation at the instants of
glottal closure for vowels is higher compared to the
strength of the voiced consonants. Therefore, the strength
of excitation represented by the Hilbert envelope shows a
significant change at the transition from consonant to vo-
wel, and hence can be used as a cue for detecting VOP.
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Fig. 8. (a) Speech waveform with manual marked VOPs, (b) Hilbert envelope o
and (e) hypothesized VOP after eliminating few spurious peaks.
Fig. 8 shows the speech waveform with manual marked
VOPs, the Hilbert envelope of the LP residual, the VOP
evidence, output of peak picking algorithm, and the
hypothesized VOPs. The VOP evidence is obtained from
the Hilbert envelope of the LP residual by multiplying it
with the Gabor filter, and taking the sum of the product
for every sample shift. From the VOP evidence plot as
shown in Fig. 8c, the peaks are located using a peak pick-
ing algorithm. Spurious peaks are eliminated as shown in
Fig. 8d and e, using the characteristics of the VOP evidence
plot, namely, between two true VOP events, there exists a
negative region of sufficient strength due to vowel region.
The procedure for eliminating the spurious peaks in VOP
evidence (Fig. 7c) is as follows: Take a window of VOP evi-
dence, find the maximum and minimum evidence. Set a
threshold for positive region (positive threshold = scale
factor � max evidence) and negative region (negative
threshold = scale factor � min evidence). If the evidence
value is greater than the positive threshold, then it is
detected as a VOP candidate. This will give rise to spurious
VOPs. Therefore the negative threshold is used to eliminate
them. If the VOP evidence value between two successive
detected peaks do not fall below the negative threshold,
the first peak is eliminated. It is possible to further reduce
some of the spurious VOPs using the F 0 information.
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For example, the absence of voicing between VOP ‘10’ and
‘11’ shown in Fig. 7b helps to eliminate the spurious VOP
‘10’.

5.4. Feature parameterization

The association of syllable-like sequences with F 0 con-
tour, as used in this study is shown in Fig. 9. The F 0 con-
tour located within the region of two consecutive VOPs, is
treated as one segment of F 0 contour. A set of parameters
derived from F 0 movements, energy and duration are used
for representing each segment.

The F 0 contour between two consecutive VOPs as
shown in Fig. 10 corresponds to the F 0 movement in a syl-
lable-like region, and it is treated as a segment of F 0 con-
tour. The nature of F 0 variations for such a segment may
be a rise, a fall, or a rise followed by a fall in most of the
cases. We assume that more complex F 0 variations are unli-
kely within a segment. To represent the dynamics of the F 0

contour segment, we use tilt parameters (Taylor, 2000).
With reference to Fig. 10, tilt parameters, namely ampli-

tude tilt (At), and duration tilt (Dt) are defined as follows:

At ¼
jArj � jAf j
jArj þ jAf j

ð4Þ

Dt ¼
jDrj � jDf j
jDrj þ jDf j

ð5Þ

where Ar and Af represent the rise and fall in F 0 amplitude,
respectively, with respect to F 0p . Similarly Dr and Df repre-
sent the duration taken for rise and fall, respectively.
Fig. 11a–f shows F 0 contours with different values of tilt.
The use of tilt parameters help to represent F 0 patterns
quantitatively, instead of quantizing and labeling of F 0 pat-
terns as in other approaches (Shriberg et al., 2005; Adami
and Hermansky, 2003).

Studies have shown that speakers can vary the promi-
nence of pitch accents by varying the height of the F 0 max-
ima, to express different degrees of emphasis. Likewise, the
Smoothing of

VOP

Speech signal

extraction

Extraction of Fo
Fo contour

Fig. 9. Association of F 0 contour with locatio
listener’s judgment of prominence reflect the role of F 0 var-
iation in relation to prominence variation (Gussenhoven
et al., 1997). From Fig. 11e and f, it is clear that the tilt
parameters do not represent the height of F 0 peak. To
express this, the difference between F 0 peak and F 0 valley
(DF 0 ¼ F 0p � F 0v ) is used in this study. The position of
the F 0 peak (position of onset) makes difference in the per-
ceptual prominence (Gussenhoven et al., 1997), and this is
represented using the distance of F 0 peak (Dp) with refer-
ence to VOP.
6. Prosodic features for language recognition

Languages differ in intonation, rhythm and stress char-
acteristics. These differences are represented using parame-
ters derived from F 0 contour, duration and energy.
6.1. Intonation

The direction of F 0 change, either rising or falling, is
determined by the phonological patterns of the constituent
words, which are language-specific. Our goal is to represent
F 0 contour with suitable parameters to bring out the lan-
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guage-specific characteristics present in it. It was demon-
strated that the tonal events are aligned to the segmental
events such as the onset and/or offset of a syllable in Ger-
man (Atterer and Ladd, 2004). In Mandarin, peaks of F 0

are found to be consistently aligned with the offset of the
tone-bearing syllable in certain situations (Xu, 1998). In
this work, F 0 contour is represented using the following
measures:

1. Change in F 0 (DF 0).
2. Distance of F 0 peak with respect to VOP (Dp).
3. Amplitude tilt (At).
4. Duration tilt (Dt).

Absolute values of the frame level F 0 are more depen-
dent on the physiological constraints, and hence are more
speaker-dependent. Therefore, absolute F 0 values are not
included in the feature set for language recognition studies.
6.2. Rhythm

The ability to distinguish among languages based on a
signal which preserves low frequency information has been
documented in infants as well as in adults (Ramus and
Mehler, 1999). Two (correlated) variables, namely the pro-
portion of vocalic intervals and the standard deviation of
the duration of consonantal intervals, are identified as cor-
relates of linguistic rhythm (Ramus et al., 1999). Both these
measures will be directly influenced by segmental inventory
and the phonotactic regularities of a specific language. A
comparison of variability in parameters such as duration
of vowels and duration of intervals between vowels has
shown that durational variability is greater in stress-timed
languages than syllable-timed (Grabe and Low, 2002).

In this work, we hypothesize that rhythm is perceived
due to succession of syllables. Segmenting into syllable-like
units enables representation of the rhythmic characteristics.
We use the distance between successive VOPs (Dt) and the
duration of voiced region (Dv) within each syllable-like
region, to represent syllabic rhythm. A technique based
on excitation information is used in the present study to
detect the voiced regions (Chaitanya, 2005). The periodic-
ity of the glottal closure instants in the excitation source
information is explored to detect the voiced regions. The
excitation information represented in the Hilbert envelope
of the LP residual (Ananthapadmanabha and Yegnanara-
yana, 1979) as shown in Fig. 12b is used to detect the peri-
odicity. The strength of the first major peak (after the
center peak) in the normalized autocorrelation sequence
of the Hilbert envelope is an indication of voicing in the
segment. The normalized strength of the first peak is com-
puted for every frame of the Hilbert envelope with a frame
shift of one sample. The normalized peak strength values
are used to decide whether a frame is voiced or not.
6.3. Stress

In all languages, some syllables are in some sense per-
ceptually stronger than other syllables, and they are
described as stressed syllables. The way stress manifests
itself in the speech stream is highly language-dependent.
Difference between strong and weak syllables is of some
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linguistic importance in every language. However, lan-
guages differ in the linguistic function of such differences.
Stress in many languages is what defines the rhythm of
speech (Ashby and Maidment, 2005). In most of the lan-
guages, higher energy, larger F 0 movement and longer
duration help to assign prominence to the stressed syllable
relative to the surrounding syllable. We use change DE in
log energy corresponding to the voiced regions of a sylla-
ble, along with the F 0 contour and the duration features
mentioned above, to represent the stress.

6.4. Representation of prosodic features for language

recognition

It has been observed that tones of adjacent syllables
influence both the shape and height of the pitch contour
of a particular syllable (Xu, 1999), and prominence of a syl-
lable is estimated based on characteristics of F 0 contour
around it (Gussenhoven et al., 1997). A syllable in isolation
cannot be associated with rhythm, and hence a sequence of
syllables is used to represent rhythm. Temporal dynamics
of prosodic parameters are important to represent the pro-
sodic variations among languages. As an approximation,
we use context of a syllable, i.e., characteristics of preced-
ing and succeeding syllable along with that of present
syllable to represent the language-specific prosody. This
representation takes care of pitch variations which extend
to the nearby syllables. When duration (approximated to
distance between two successive VOPs) of a syllable
exceeds certain threshold, it is hypothesized as probable
word/phrase boundary or caused due to a long pause,
and such syllables are not used. Since the specific interac-
tion between pitch variations, intensity and duration play
an important role in determining the prosody, the parame-
ters representing F 0 contour, duration and energy are com-
bined together to represent prosody.

6.5. Results from experimental study

To demonstrate the effectiveness of the proposed pro-
sodic features for language recognition, an experimental
study was conducted using NIST 2003 language recognition
evaluation (LRE) database (website, http://www.nist.gov/
speech/tests/lang/2003/). The task is to detect the presence
of a hypothesized language, given a segment of conversa-
tional speech recorded over the telephone channel. The
target languages include Arabic, English, Farsi, French,
German, Hindi, Japanese, Korean, Mandarin, Spanish,
Tamil and Vietnamese from the CallFriend Corpus. Both
development data and evaluation data of NIST LRE 1996
are used as the development data for NIST LRE 2003 task.
The NIST LRE 2003 evaluation set used in this experimen-
tal study contains 80 speech files from each of the 12 target
languages, each of 30 s duration from the CallFriend Cor-
pus. In addition to this, there are four sets from other con-
versational speech sources, namely, 80 Russian segments
from the CallFriend Corpus, 80 Japanese segments from
CallHome Corpus, 80 English segments from Switch-
board-I Corpus, and 80 English segments from Switch-
board Cellular Corpus. Equal error rate (EER) and
detection error tradeoff (DET) curves are used as measures
for evaluating the performance of the system.

A 21-dimension feature vector is formed by concatenat-
ing prosodic features derived from three consecutive sylla-
ble-like units. The seven parameters from each syllable-like
unit consists of distance between successive VOPs (Dt),

http://www.nist.gov/speech/tests/lang/2003/
http://www.nist.gov/speech/tests/lang/2003/
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voiced duration (Dv), change in F 0 (DF 0), distance of F 0

peak with reference to VOP (Dp), amplitude tilt (At), dura-
tion tilt (Dt) and change in log energy (DE). A multilayer
feedforward neural network (MLFFNN) classifier is
trained for 500 epochs using prosodic feature vectors as
shown in Fig. 13. During training, one of the MLFFNN
outputs is set to one (this particular output denotes the lan-
guage identity of the training vector), while all others are
set to zero. The structure of MLFFNN used is 21L 64N

16N 12N, where L represent units with linear activation
function, N represent units with nonlinear activation func-
tion, and the numerals represent the number of units in the
layers.

For testing, similar 21-dimension feature vectors are
derived from the test utterance. These test vectors are
applied (one by one) to the input of already trained
MLFFNN classifier, and evidence of different languages
at the output are noted. The evidences obtained for all
the feature vectors in the test utterance are averaged to
obtain the confidence scores for each language. Perfor-
mance of the proposed language recognition system evalu-
ated using NIST 2003 evaluation set is shown using the
DET curve in Fig. 14. The system results in an EER of
{
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Fig. 13. Prosody-based neural network classifier for language recognition.
Input feature vector consists of prosodic features derived from three
consecutive syllables.
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Fig. 14. DET curve showing the performance of prosody-based language
identification system for NIST 2003 language recognition evaluation
database.
32% which is close to the results of other prosody-based
system performance (Adami and Hermansky, 2003).

7. Prosodic features for speaker recognition

Human beings use several levels of perceptual cues for
speaker recognition ranging from high-level cues such as
semantics, pronunciations, idiosyncrasies and prosody, to
low-level cues such as acoustic aspect of speech (Heck,
2002). Prosodic cues such as pitch gestures, accent and
stress characteristics reflect the physiological as well as
habitual aspect of a speaker.

7.1. Speaker-specific prosodic features

The coordination of laryngeal and supralaryngeal move-
ments limits how syllables and tone can be aligned to each
other (Xu et al., 2002). Studies have indicated that listeners
are more sensitive to variations in F 0p than F 0v (Gussenho-
ven et al., 1997). Hence change in F 0 (DF 0), distance of F 0

peak with reference to VOP (Dp) and peak value of F 0 (F 0p )
for each segment of F 0 contour may be useful for speaker
recognition. An increase in F 0 may be obtained by increas-
ing the vocal fold tension, by increasing the subglottal pres-
sure, or a combination of them. Therefore, F 0 peak (F 0p )
and F 0 mean (F 0l) obtained for each segment of F 0 contour
may reflect some physiological as well as habitual aspect of
a speaker. The change in log energy (DE) along with F 0

change gives a quantitative measure of stress characteris-
tics, therefore may be specific to a particular speaker.
The F 0, duration and energy related parameters used in this
study for characterizing the speaker-specific aspect of pros-
ody are the following:

(a) F 0 mean (F 0l ).
(b) F 0 peak (F 0p ).
(c) Change of F 0 (DF 0).
(d) Distance of F 0 peak with respect to VOP (Dp).
(e) Amplitude tilt (At).
(f) Duration tilt (Dt).
(g) Change of log energy (DE).

Each syllable-like region between two consecutive VOPs
is represented using the above mentioned parameters to
form a seven-dimension feature vector.

7.2. Results from experimental studies

In order to use long-term features such as prosody for
speaker recognition, system generally require significantly
more data for training. Hence in 2001, NIST introduced
the extended data task which provides multiple conversa-
tion sides for speaker training (website, http://www.nist.
gov/speech/tests/spk/2001/). The effectiveness of the
proposed prosodic features is demonstrated using the
first subset of NIST 2003 extended data task (website,
http://www.nist.gov/speech/tests/spk/2003/). Unlike the

http://www.nist.gov/speech/tests/spk/2001/
http://www.nist.gov/speech/tests/spk/2001/
http://www.nist.gov/speech/tests/spk/2003/
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traditional speaker recognition tasks, the extended data
task provides more speech data for training (4-side/8-
side/16-side, where each conversation side contains
approximately 2.5 min of speech). Each target model is
tested with a set of 1-side test utterances, where the task
is to find out whether the particular test utterance belongs
to the target speaker or not. We have chosen the first split
in NIST 2003 extended data task for this study. It consists
of 137, 54 and 74 speaker models for the 16-side, 8-side,
and 4-side cases, respectively. The models are evaluated
using 1076, 1238 and 1258 test utterances for the 16-side,
8-side and 4-side cases, respectively.

We hypothesize that the distribution of syllable level
prosodic feature vectors are speaker-specific. To capture
the distribution of the feature vectors, autoassociative neu-
ral network (AANN) models or alternatively conventional
Gaussian mixture models (GMM) can be used. The AANN
is a feedforward neural network which tries to map an
input vector onto itself, and hence the name autoassocia-
tion or identity mapping (Haykin, 1999; Yegnanarayana,
1999). It consists of an input layer, an output layer and
one or more hidden layers. To capture the distribution of
the feature vectors, examples are presented in a random
order to the AANN and the network is trained using stan-
dard backpropagation algorithm (Yegnanarayana, 1999;
Haykin, 1999). It has been demonstrated that the AANN
has the ability to capture the distribution of input data
(Yegnanarayana and Kishore, 2002).

To illustrate the speaker-specific distribution, the seven-
dimensional prosodic feature vectors derived from speech
corresponding to two male speakers in NIST 2003 database
is compressed and then plotted. Fig. 15 shows the distribu-
tion of nonlinearly compressed prosodic feature vectors.
Here the nonlinear compression is obtained using autoas-
sociative neural network (AANN) model with a structure
7L 14N 3N 14N 7L where the compressed feature vector
is obtained from the dimension-compression hidden (mid-
dle) layer having three units.
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Fig. 15. Compressed prosodic feature vectors for two male speakers
(taken from NIST 2003 extended data).
During testing, for each prosodic feature vector in the
test utterance, the error between the output and the input
of AANN is noted. This error is converted into confidence
value using Ci ¼ expð�EiÞ, where Ei is the squared error
for the ith frame. The average confidence is computed as

C ¼ 1
N

PN
i¼1Ci, where Ci is the confidence value for the ith

syllable, and N is the number of syllables in the test
utterance.

For each target speaker, one AANN model is trained
for 500 epochs to capture the distribution of prosodic fea-
ture vectors. The structure of the AANN model used for
capturing the distribution of the speaker-specific prosodic
features is 7L 28N 2N 28N 7L, where L represent units with
linear activation function, N represent units with nonlinear
activation function, and the numerals represent the number
of units in the layers. A set of background models built
from a known set of impostor speakers (taken from
another split of the same database) helps to fix a global
threshold for verification, to decide whether the test utter-
ance belongs to the target speaker or not. The background
models consists of a set of male and female models as illus-
trated in Fig. 16.

Score normalization is used for scaling the likelihood
scores, which helps to find a global speaker independent
threshold for the decision making process. Feature vectors
obtained from the test utterance is presented to the target
speaker model as well as to a set of background models
as shown in Fig. 16. For each test utterance, the decision
on the gender is made based on the average score of
male/female background model set. The raw score
obtained from target speaker model is test normalized
(Auckenthaler et al., 2000) using scores of the background
(BG) models. The normalized score Cn is computed from
raw score C as

Cn ¼ ðC � lgÞ=rg ð6Þ
where lg and rg represent mean and standard deviation of
BG scores corresponding to the hypothesized gender of test
utterance.

Our prosody-based speaker verification system resulted
in an EER of 12.4%, 15% and 23% for 16-side, 8-side
and 4-side conversational cases of the particular data set,
respectively. Performance is shown using the DET curves
in Fig. 17. Better performance in case of 16-side and 8-side
training cases show that more training speech is required
for capturing the prosodic characteristics well. Perfor-
mance of our prosody-based system is close to the results
reported for NIST extended task 2001 using features
derived without using ASR (Adami and Hermansky,
2003; Adami et al., 2003; Peskin et al., 2003).

7.3. Combining evidence from prosody and spectral-based

systems

As spectral features are vulnerable to channel mismatch
and noise, the use of prosodic features less affected by
these factors, can play important role in improving the
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prosody-based system and combined system for 8-side conversational
case.
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robustness of the speaker recognition system. The evidence
about the speaker from different features may be combined
in several ways to achieve better performance. One simple
approach is the weighted addition of evidences from differ-
ent systems. Our spectral-based (WLPCC) baseline speaker
verification system (Yegnanarayana and Kishore, 2002)
gives an EER of 11.8% for the same 8-side data set. Pros-
ody-based evidence provide complementary information
while combining with the spectral-based evidence. Combin-
ing by simple addition results in an EER of 9.3%, showing
the presence of complementary information in these
features as illustrated in Fig. 18.

8. Summary and conclusions

In this paper, we have presented a new method for
extracting prosodic features from the speech signal, useful
for applications such as language and speaker recognition.
This approach eliminates the requirement of automatic
speech recognizer for prosodic feature extraction, but still
gives a meaningful association of prosodic features with
the corresponding syllable sequence. This is done with
the knowledge of VOPs, detected automatically from the
Hilbert envelope of the LP residual of the speech signal.
The region between two successive VOPs is considered as
a syllable-like region, and parameters are derived to repre-
sent duration, dynamics of F 0 contour and energy varia-
tions corresponding to each region.

We have evaluated the effectiveness of prosodic features
extracted using the proposed approach for language recog-
nition in the case of NIST LRE 2003 task. Though the suc-
cess of language recognition was constrained by the limited
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speech data available for training, it clearly illustrates the
potential of prosodic features for distinguishing languages.

For evaluating the potential of prosodic features for
speaker verification, a study was conducted using NIST
SRE 2003 extended data. The performance seems to be sig-
nificant, especially for cases where more speech data was
available for training the models. The complementary nat-
ure of the prosodic features and spectral features helps to
improve the overall performance of speaker verification,
while combining evidence from prosody-based and spec-
tral-based systems.
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